深圳大学学生宿舍建筑研究

来源 :深圳大学 | 被引量 : 0次 | 上传用户:liqingxian1986
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在高校扩招的浪潮之后,国内高校人数从高速增长速率减缓,高校建设也逐步转向注重品质、内涵的方向发展。纵观高校建设的历史,久的可达百多年,短的数十年,其校舍的设计、建设时间跨度甚大。同样的,高校学生宿舍的设计标准和水平也差异较大,随着社会及使用者对空间的关注和居住品质要求的提高,需要引进新的设计理念和设计标准。深圳大学的宿舍建设跟随者全国高校的发展浪潮,在深圳市特有的地域环境及设计理念下,涌现了一大批优秀工程案例。全文通过对深圳大学学生宿舍的现状总结归纳中发现问题,引入社会心理学群体概念进行问题解析,从未总结出现存问题的解决办法和设计方法,可以分为四个部分:第一部分通过概括高校学生宿舍的使用现状、现状与需求存在的矛盾对论文的选题和背景原因进行阐述,对论文选题的实际意义进行论述,并界定了相关研究的概念和范围,同时提出论文的研究方法和框架。第二部分主要阐述了国内外高校及深圳大学宿舍建筑的发展,结合深圳大学学生宿舍的实际建设情况,对高校学生宿舍这一类型的建筑发展、历史、演变进行系统性总结。第三部分从现实角度对当代大学生对住宿需求的变化进行分析,发掘出深圳大学学生宿舍现状中需求和居住中存在的具体矛盾。接着对居住需求空间进行分类阐述、举例,为设计要点提供依据。并针对学生宿舍空间构成的模块层级进行分层论述,为设计要点提供依据。最后结合实际案例,对深圳大学学生宿舍区的规划及区级功能配置进行讨论,总结出具有参考意义的配置模块。第四总结深圳大学学生宿舍的一般设计手法及建筑特点,分析现存的不足之处,结合国内外高校宿舍的发展,展望今后深圳大学宿舍建筑的设计。
其他文献
近来人们对应力发光领域的研究兴趣日益增长,应力发光(Mechanoluminescence,ML)是指应力发光材料受到力的刺激时产生的荧光发射。应力发光将是引发许多重要技术(例如新光源,压力可视化传感器和机械电子学等)的有趣的物理光电学。应变感应的压电势能刺激光子的发射,而无需额外的能量例如光和电激发,这为制造智能光电器件提供了重要的应用前景。在过去的几年中,掺杂ZnS、CaZnOS、SrAl2O
超分辨显微成像技术经过了几十年的发展,已经提出了相当多的方法与手段。但是在生物显微成像领域,主流的超分辨方法,例如电子显微镜、近场显微镜或荧光显微成像方法等,都具有明显的缺陷,难以同时满足高分辨、无标记、无毒无损伤等多个条件。相干反斯托克斯拉曼散射(Coherent Anti-Stokes Raman Scattering,CARS)技术作为一种探测分子振动状态的非线性方法,能够同时得到聚焦元内多
随着光与物质的相互作用领域研究的深入,人们越来越意识到空间矢量光束的重要性。相较于传统的标量光束,空间矢量光的电场矢量呈现出不均匀分布的性质。这一性质在与金属颗粒相互作用时显得尤为突出,矢量光束在金属颗粒上产生的局域表面等离激元成功应用在光学显微成像、生物传感、微纳加工、光学操控等领域,并且取得很大成功,使得矢量光束在近二十年来成为光学领域最为热门的研究之一。我们最近独立发现一种与径向偏振光束类似
在本文中,我们提出了一种基于新型二维材料的表面等离子体共振(SPR)传感器以提高传统SPR传感器的灵敏度。作为具有自然范德华异质结构的最新新型二维(2D)材料,与人工堆叠异质结构相比,弗兰克石具有独特的优势。相关研究中表明基于弗兰克石的SPR传感器的灵敏度与弗兰克石覆层的厚度有关。理论上可以获得190°/RIU的灵敏度,与传统的SPR生物传感器相比,灵敏度提高了62%。在此研究基础上,我们通过在弗
在工业以及自动化不断发展的今天,传感器技术显得尤为重要。光纤传感器的问世弥补了众多电学传感器的显著缺点,例如:电磁干扰、环境腐蚀、难以信号传输和组网等。光纤传感器最为引人注目的优点是其制作成本低并且不会产生电火花。这些特性使得光纤传感器广泛应用于石油化工、天然气、桥梁建筑以及航空航天等领域。本文面向电磁感应焊接、油气开采、航空发动机等极端环境中的测量需求,利用光纤光栅与光纤微腔干涉仪作为传感器件实
角动量是光的一个重要自由度,它分为自旋角动量(Spin Angular Momentum,SAM)和轨道角动量(Orbital Angular Momentum,OAM),这两种角动量之间可以相互耦合和转化,即通常所说的自旋-轨道角动量相互作用。角动量已经成为光学领域的一个研究热点,在高速光通信、粒子操控、全息成像、量子光学、新材料等领域得到广泛的研究和应用。通过之前的研究发现:在自由空间的条件下
信息时代的到来,对超高速、大容量通信的定义提出了更高的标准,尤其是物联网的发展以及各种智能场景的出现,使得未来将是万物互联的高速、高密通信时代,因此,目前的通信容量和通信速率是无法满足未来的需求的。而目前已有的通信技术大都达到瓶颈,很难实现显著的容量增长。而轨道角动量(Orbital Angular Momentum,OAM)复用光通信技术可以在现有通信容量的基础上,数倍甚至数十倍地提高通信容量,
随着现代生命科学迅速发展,人们对微观的生命活动的认知和研究愈发深入,为了更好地对生物组织、细胞、分子等微观生物样品进行观测,研究人员对具有分辨率高、检测速度快、同时对生物样品无损伤的成像技术的需求愈发强烈。近年来,人工智能的快速发展为定量相位成像提供了全新的思路和技术手段。基于深度学习的相位重构技术可以从一张全息图中快速准确地重建相位,实现动态相位重构,避免了机械误差和不必要的噪声的引入。但是在实
随着城市经济发展迅速,大量青年人涌入一、二线城市。然而,高房价、高租金使得青年群体难以租购传统住宅,面向青年的公寓作为一种特殊类型应运而生。近年来,国家相继出台相关公寓租赁的政策,青年公寓的新建与改造项目不断出现。新居住类型的出现旨在满足当代年轻人需求,为其提供舒适宜居的环境。与传统公寓不同,青年公寓除基本满足居住功能外,公共空间作为青年公寓重要的功能组成部分,是青年间社会交往的关键性空间场所。但
数字条纹投影三维测量方法具有高分辨率、高精度、非接触式等优点,是应用最广泛的三维成像技术之一。随着各行业需求不断增加,对数字条纹投影三维测量技术提出了更高要求,尤其在效率和精度方面。近年来,深度学习获得快速发展,并广泛应用于智能制造、自动驾驶和计算机视觉等领域,为本文研究将深度学习用于解决条纹投影三维测量相关问题带来启发。由相机和投影仪的非线性响应引起的相位误差是影响数字条纹投影三维测量精度的重要