海藻酸铁复合PVDF微纳米纤维制备及光-芬顿去除MB研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:y412327391
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
芬顿工艺作为一种废水处理技术备受环境保护领域学者关注,其中应用较为广泛的是光-芬顿氧化法。为改善传统均相芬顿工艺的p H适用范围较窄且产生较大量铁污泥的缺陷,非均相芬顿催化氧化体系成为研究和开发的重点。本课题选用海藻酸钠作为非均相芬顿氧化剂的固铁载体;选择有效光稳定性的含氟聚合物与其复合,采用高压静电纺丝法制备具有高比表面积的复合微纳米纤维,进一步通过配位方式将其与Fe Cl3·6H2O络合,并以亚甲基蓝为水体系模型污染物,考察复合纤维对其的有效吸附和光芬顿氧化效果。以聚偏二氟乙烯(PVDF)为电纺溶液中的成纤组分,以N-N二甲基甲酰胺(DMF)为纺丝溶剂,高压静电纺丝质量配比10:0、10:1、10:2、10:3、10:4和10:5的PVDF与海藻酸钠(ALG)复合溶液,得到系列PVDF-ALG复合微纳米纤维;进一步,将PVDF-ALG纺丝纤维与Fe Cl3·6H2O溶液配位反应,获得PVDF-ALG-Fe复合纤维。通过扫描电子显微镜(SEM)、傅立叶变换红外光谱(FT-IR)、X射线光电子能谱(XPS)和水接触角(CA)等测试方法,对PVDF-ALG复合纤维及PVDF-ALG-Fe复合纤维进行形貌观测、结构表征及表面润湿性检测。结果表明,在给定电压18 k V、推进速率0.3 m L/h和接收距离20 cm下,ALG与PVDF复合可形成形貌良好的亲水性微米及纳米级电纺纤维;PVDF-ALG-Fe复合纤维体系中的羧基与Fe Cl3·6H2O的铁离子发生配位反应。在此基础上,选用亚甲基蓝(MB)作为水体的模拟污染物,探讨PVDF-ALG微纳米纤维的吸附性能及PVDF-ALG-Fe复合纤维的吸附与光芬顿性能。吸附实验表明,质量配比10:3(即PVDF-ALG(0.3))的微纳米纤维对MB有最大吸附量(为148.11 mg/g);PVDF-ALG复合微纳米纤维对MB的吸附行为符合准二级动力学模型及Langmuir吸附等温模型。通过对PVDF-ALG-Fe复合微纳米纤维的吸附与光芬顿研究可知,H2O2浓度0.20 mmol·L-1时,PVDF-ALG(0.3,质量比)-Fe(0.08,质量浓度)在紫外光下40 min内降解97.24%的MB,可见光下240 min内降解90.45%的MB;复合纤维在前四次的光芬顿循环实验中对MB的去除率均高于90.23%;体系对MB的去除是吸附-光芬顿协同作用的结果。综上,论文工作通过静电纺丝方式获得了一种相对稳定的水体系非均相芬顿复合材料,并可用以有效去除水中污染物。
其他文献
一氧化碳(CO)是一种无色、无味、危险、易燃、有毒的气体,具有一定的还原性,在空气中能持久稳定存在。CO作为最有害的碳氧化物,亟需开发一种高灵敏度、高选择性和可靠的传感器,用于实时检测低浓度CO。亦可制备一种高效催化剂,将CO直接转化为无毒的CO2。作为n型半导体,Sn O2具有价格便宜、耐光、耐热等诸多优点,并且可以活化表面的吸附氧。因其优越性在众多过渡金属氧化物中脱颖而出,成为一种受欢迎的催化
学位
α-Fe2O3禁带宽度窄、天然丰度高、价格低廉、安全无毒、兼具光催化半导体和芬顿催化剂两方面优势。但是,在光芬顿反应过程中存在电子(e-)和空穴(h+)分离和转移速度慢且易复合、有效p H范围窄、反应速度慢等缺点,限制工业领域应用。形貌调控和构建异质结是对催化剂改性的有效手段,采用金属有机骨架(MOFs)衍生策略,以Ui O-66(Zr)-NH2为模板,通过异质外延生长方法合成MIL-88B-on
学位
航空飞行器发动机的热防护问题尤为突出,而使用吸热航空燃料作为机载冷却剂的再生冷却(CCA)技术被认为是航空飞行器最有效的热防护方法之一。吸热碳氢燃料不仅为航空飞行器提供推进能量,也提供了裂解化学反应吸热,可以保护发动机部件并冷却燃烧室。因此,开发提高碳氢燃料裂解反应速率的新方法成为许多工程问题中的关键问题。由于碳氢燃料裂解焦化产生结焦积碳的问题,使传热受阻,导致实际应用也有很大阻碍,确定如何控制结
学位
药物废水是一种常见的工业废水,具有排放量大、危害严重、难治理的特点,因此寻找一种有效去除水体中药物污染物的方法至关重要。光催化芬顿法被认为是一种具有应用潜力的废水处理技术,该技术的核心是开发高效光催化剂,要求催化剂既具有良好的吸光性,同时能催化H2O2。BiOI由于其特殊的层状结构,对可见光具有优异的吸收,受到很多学者的关注。FeOOH作为异相芬顿催化剂对H2O2具有良好的催化活性,但是存在Fe(
学位
劳动力市场是要素市场的重要组成部分,其发展程度直接影响着经济的发展和社会的安定。我国劳动力市场发育不均衡,机构不健全,市场不统一,应引起有关方面的重视。
期刊
钙钛矿太阳能电池(Perovskite Solar Cells,PSCs)自2009年出现以来迅速发展,从众多新型太阳能电池中脱颖而出,其光电转化效率在近十年内从最初的3.8%迅速提高到25.7%。然而,钙钛矿材料自身缺陷不仅会引起大量非辐射复合,造成器件效率远低于Shockley-Queisser理论极限。其次,缺陷的形成及其迁移会导致器件稳定性下降,并且出现严重的迟滞现象。因此,抑制钙钛矿晶体
学位
近年来,开发具有良好表面增强拉曼散射(SERS)活性的非贵金属基底一直是SERS领域的研究热点。过渡金属硫族化合物(TMDs)具有原子级表面、表面活性高和费米能级附近的态密度(DOS)较高等特点,并且能够避免传统贵金属基底易发生副反应、重现性较低以及制备工艺繁琐的缺点,在SERS领域得到了广泛应用。二硫化锡(SnS2)是一种典型的TMD材料,存在稳定的半导体相(1T-SnS2)和亚稳态的类金属相(
学位
叶面施肥作为一种新兴、高效的施肥方式已经得到了广泛应用。然而,由于植物表面粗糙结构的存在,使大多数叶片具有疏水甚至超疏水性质,这造成了实际应用中喷施溶液的严重损失。因此增强叶面肥在疏水植物叶片上的铺展对于实际的农业生产至关重要。目前最常用的方法是添加助剂,但是工业助剂通常只能在静态的情况下增强液滴在超疏水表面上的铺展,在动态冲击的情况下,液滴首先在表面铺展至最大面积,之后会发生收缩,最终在超疏水表
学位
三角形知识作为初中阶段非常重要的知识板块,由于其庞大的知识体系和交错复杂的教材编排方式,导致学生对初中三角形知识的学习效果并不理想,所以一个行之有效的教学方法对于指导学生更高效率的学习三角形知识是非常有必要的。从数学学习的本质和数学教学的根本任务上来看,形成一个良好的数学认知结构是解决三角形数学知识教学问题的关键。CPFS结构作为数学特有的且良好的数学认知结构,用它来研究三角形知识的教学是非常有必
学位
多金属氧酸盐(POMs)因其具有强酸性、高富氧表面、强氧化还原能力、快速接受及转移电子的能力和高催化活性而被广泛应用。但其自身存在易溶解、不稳定、难分离、吸光范围窄等缺点。金属配合物具有灵活多样的金属中心、可调节的有机配体及配位方式和刚性的有机骨架结构等特点,可作为POMs的理想连接体增强骨架刚性和稳定性。因此,将POMs和金属配位聚合物相结合产生新型有机无机杂化材料可发挥二者的协同作用,同时引入
学位