长白松燃烧过程分析及热动力学研究

来源 :东北林业大学 | 被引量 : 0次 | 上传用户:liangting123456
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
长白松(Pinus syluestriformis)又名美人松,是长白山地区特有的二针松,主要分布于长白山北坡,或于二道白河镇附近和海拔1100m左右的自然保护区中,由于其地理分布窄、种群少,属于衰退型种群,近年来由于人类破坏加剧、森林火灾等原因,导致其濒临灭绝。我国已明确规定长白松为一级重点保护树种。但国内并没有针对长白松热解特性的系统性研究,缺乏针对长白松火灾的预防和救治措施。本文选择长白松的树枝、球果、树皮和松针进行热解实验以及热动力学分析。探究不同实验对象的热解燃烧特性,并分别改变升温速率、粒径大小、气氛环境来探究不同条件对实验对象热解特性的影响。根据得到的热动力学参数,通过Coats-Redfern法,选择合适的热动力学模型,并且计算活化能E和频率因子A,从而建立建全长白松燃烧特性数据库。对实验对象进行燃烧实验,可以得到并分析其燃烧生成物以及热释放速率等数据,为长白松火灾的防治提供理论数据。结果表明:长白松的树枝、球果、树皮和松针的热解过程均可以分为失水阶段、微失重阶段、主要失重阶段、炭化阶段。其中,升温速率越大,热解越不充分,当升温速率为20℃/min时,失重率最小,为80.34%,并且存在热滞后现象。粒径大小对实验结果的影响较小。不同的实验气氛对实验结果影响非常大,在高纯空气气氛中热解过程有两个峰,反应持续时间更长,残余量更少,失重率为98.14%。长白松的树枝、球果、树皮和松针在氮气气氛下最佳机理函数是[1-(1-α)1/3]~2,按照活化能的大小排序为:树枝>球果>树皮>松针。长白松球果的燃烧过程中,热释放速率先骤升再下降,总释放热量呈上升趋向,但后半段上升速率降低,氧气和二氧化碳浓度变化走向整体上相反,一氧化碳浓度曲线变化复杂,这主要是由于球果存在不完全燃烧现象,总体上为先上升后下降,中间过程有两个峰值。长白松球果燃烧过程快速且剧烈,因为球果鳞片外部油脂会加剧燃烧过程,并且鳞片含有大量的木质素、纤维素和半纤维素,在干燥情况下使得球果十分易燃,因此要格外注意脱落的球果可能会对长白松带来的火灾隐患。
其他文献
为了解群落的演替趋势并探讨阔叶红松林群落适应环境演变的生物学机制,同时也为森林群落动态长期监测研究、维持群落结构、恢复群落生物多样性和合理经营管理提供科学依据。本研究以小兴安岭典型阔叶红松林样地为研究对象,分析2010、2015和2020年群落幼树物种多样性动态变化、空间格局动态变化、2010、2015和2020优势幼树在三次调查期间的空间分布格局及其关联性,并分析2020年环境变量与3种优势幼树
学位
21世纪的森林资源变得十分重要,保护森林资源逐渐变成刻不迟缓的重大问题。国家也提出“绿水青山就是金山银山”的资源保护理念。森林风速监测是保护森林资源的重要方式之一,森林风对于树木成长是一把双刃剑,它能帮助无人机喷药育种,也能助森林火灾迅速蔓延,以及影响森林气象观测等研究,所以森林风速监测具有重要实际意义。光纤传感技术自发明以来,一直广泛应用于信息传输和检测等领域。本文提出了一种基于光纤传感技术的森
学位
钛酸锶钡(BST)是一种重要的电子陶瓷材料,具有高介电常数、低介电损耗,在钡锶比为0~1范围内电性能连续可调,并有良好的稳定性及绝缘性,可在动态存储器、红外探测仪、陶瓷电容器等各种电子器件中广泛应用。但目前BST陶瓷较高的烧结温度(>1300℃)限制了该材料的实际应用,如何降低BST陶瓷的烧结温度成为国内外研究重点。冷烧结是一种可以显著降低陶瓷烧结温度的新型工艺,通过引入过渡液相,可在超低温下(<
学位
作为新兴的激光雷达扫描技术,无人机激光雷达(UAV-Li DAR)技术和手持移动激光扫描(HMLS)技术具有采集数据效率高、成本低等优点,但是这两种技术应用于较复杂的林业调查时,由于平台限制,难以采集完整的树木信息,故融合两个平台数据获取完整树木信息已成为信息处理必然的发展趋势。因此,本研究提出一种无标识的融合UAV-Li DAR和HMLS点云数据的方法,并将融合后数据进行数据压缩、单木分割、结构
学位
水是万物之源,是一切生物赖以生存的物质基础,是社会生产最基本的资源。随着世界范围内工业的快速发展,石油泄漏和工业废水等含油废水量迅速增加,并污染生态系统和影响人类生命健康。因此,含油废水的处理受到人们的广泛关注。膜分离技术因其无相变、能耗低、操作简便等显著优势在废水修复中得到迅速推广。值得注意的是,聚偏氟乙烯(PVDF)因其优异的化学稳定性、抗氧化性、易成膜性等优点,被广泛用作油水分离的微滤膜。然
学位
21世纪,新能源产业快速发展,以满足人类不断增长的能源需求并缓解严重的环境污染问题。氨气(NH3)由于其氢含量高、能量密度高、液化压力低、燃烧产物安全等特点,被视为是一种优秀的清洁能源。而节能环保、操作方便的电催化氮还原合成氨工艺是目前最有潜力的制备方法。但是目前最困难的仍是设计一种性能优异的催化剂来满足工业生产氨气的需求。本文采用量子化学方法对双金属团簇的结构进行搜索,筛选出稳定团簇结构,通过电
学位
海水是一种多组分腐蚀性介质,当螺旋桨、海水泵、阀等海洋装备运行时,将面临着腐蚀和空蚀的协同作用。腐蚀是金属材料表面与电解质溶液发生反应而引起的电化学损伤,而空蚀是海水中的空化泡溃灭导致的机械损伤,这两种损伤形式可能相互影响,产生促进或抑制彼此的作用。目前,对于腐蚀-空蚀协同作用的理解并不充分,尤其是以天然海水为介质开展的相关研究鲜见报道。深入开展合金在海水中空蚀行为及机理的探究,有助于补充腐蚀-空
学位
树木在生长过程中,有时会出现中空、腐朽等现象,导致树木发生倒塌或死亡,给人民生命财产造成难以挽回的损失。为了在不损伤树木的前提下及时了解树木的健康情况,常使用应力波、电阻成像以及超声波等无损检测技术对活立木进行检测。近些年,随着探地雷达技术的发展,该技术已被用于树木的缺陷检测。基于目前探地雷达技术仍存在的问题,本文主要研究介电常数的修正以及雷达波数据的解释,来提高探地雷达的检测和识别精度。树木的介
学位
在海洋移动式核电站中,核电站构件长期遭受恶劣的腐蚀环境(反应堆冷却剂—铅铋共晶合金(LBE)的腐蚀以及海洋环境对材料表面的腐蚀),传统奥氏体不锈钢中Ni元素会在LBE中优先溶解,加速材料的腐蚀进程。含氮奥氏体不锈钢利用N、Mn代替Ni元素,避免了Ni元素在LBE中的溶解,提升了表面钝化膜的稳定性,提高材料在环境中的耐腐蚀性,满足海洋移动式核电站构件苛刻的使用要求,因此研究含氮奥氏体钢在LBE中的腐
学位
随着煤、石油和天然气等不可再生能源的日益消耗,能源危机、环境污染等问题愈发严重,社会的发展受到严重限制。因此,人们亟需开发出高效可再生的清洁能源。而光催化产氢技术可将太阳能转化为氢能,整个过程简单安全且成本较低,因而该技术具有重要的现实意义和广阔的应用前景。光催化产氢技术应用的关键在于光催化剂的选择和设计。在众多的光催化剂中,g-C3N4具有带隙易于调控,制备简单且成本低,化学稳定好等优势,受到国
学位