基于MEMS技术的CT传感器测量技术研究

来源 :国家海洋技术中心 | 被引量 : 0次 | 上传用户:mbcz123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
海水温度盐度是海洋动力环境要素中最重要的两大要素,海水温度盐度的测量对海洋资源开发、利用以及军事国防等方面都具有重要的意义。未来海洋观测技术智能化、网络化发展趋势,使海洋传感器技术不断向小型化、低成本化的方向发展。现有传统电导率和温度传感器存在着成本高,无法实现大批量制造时保证高一致性的问题,制约着其在海水养殖、海洋环境监测等领域的大范围推广应用。本课题从测量原理出发,通过理论分析及有限元仿真分析,选择使用薄膜铂电阻作为MEMS温度传感器、环状平面四电极电导池作为MEMS电导率传感器。基于流-固热传导函数及焦耳热效应,仿真分析了焦耳热对MEMS铂电阻温度传感器的温度测量带来的影响,根据仿真数据确定了铂电阻温度传感器走线间距为250μm;通过电场和电势分布的仿真分析,优化了电导率传感器探头的电极结构和引线方式。最终确定了MEMS CT传感器探头设计方案。在完成探头的加工、封装及装配后,根据MEMS传感器的测量特性及精度要求设计了相应的信号采集系统,通过系统软件的功能设计,实现对信号采集系统的整体控制。最后,为了检验MEMS CT传感器的准确性和重复性,设计并进行了一次定标和三次复测实验。经过对实验数据与标准仪器SBE49 CTD实验数据的比测分析,得出定标约一个月后MEMS温度传感器最大漂移量为0.0068℃、MEMS电导率传感器最大漂移量为-0.0424m S/cm的结果。实验结果还表明MEMS CT传感器具有良好的数据重复性及稳定性,本文研究的MEMS CT传感器达到了设计要求的技术指标。
其他文献
泥石流是易发于山区的严重自然灾害,而我国山区面积较大,泥石流灾害频发,国家和人民遭受了巨大损失。为减轻泥石流灾害,学者们展开大量研究并取得了一定成果,但仍存在一些问题:现有研究以泥石流起动条件、运动机理、堆积原理以及泥石流浆体和大块石冲击力等内容为主,然而以提高结构抗冲击能力为目标进行新型拦挡结构体系开发的研究很少。本文针对含巨石的水石流和稀性泥石流,提出了钢-混凝土格栅坝体系,并对该新型体系在冲
等离子体催化结合了等离子体的高活性和催化材料的选择性,已成功应用于材料加工和化学物质合成等领域。作为一种常用的等离子体催化反应器,介质阻挡放电(Dielectric Barrier Discharge,DBD)正受到越来越多的关注。本文通过采用粒子云网格/蒙特卡洛碰撞(Particle-In-Cell/Monte Carlo Collision,PIC/MCC)模型,围绕催化孔内的表面放电、流注的
随着我国隧道工程建设的迅猛发展,隧道施工中越来越多地遭遇由不良地层导致的地质灾害,严重威胁着施工人员与设备的安全。隧道超前探测技术能够提前探明前方的地质类型,揭示即将到来的不良地层,是提高施工安全性的有力保障。然而,现有的超前探测技术多面向钻爆法施工隧道,不适用于全断面岩石隧道掘进机(Tunnel boring machine,TBM)工法。且与钻爆法的循环爆破不同,TBM的开挖进程是连续的,在掘
水安全关乎全人类的未来,如何应对日益严峻的水污染问题受到了全球范围内的广泛关注。研究表明,非晶合金因其无序结构、亚稳特性等特点而展示出高效降解偶氮染料等有机污染物的催化性能。然而,因制备工艺的限制,目前常用的非晶合金催化剂多为粉末和条带,存在比表面积小,催化剂回收困难等弊端。激光选区熔化(SLM)3D打印技术是近年来发展起来的一种增材制造技术,能够成形任意复杂形状和多孔结构的非晶合金催化剂。本文通
水下平台温盐深剖面仪(CTD,Conductivity-Temperature-Depth Profiler),是一种基于水下观测平台对海水温盐深水文信息变化进行长期连续观测的剖面仪。CTD作为海洋的“感官”,利用其获取的深度、温度和电导率可衍生出海水的盐度、密度和声速等能反映出海洋物理特性的重要参数,为海洋探索和科学研究提供了最基本的前提条件。鉴于我国现有支撑观测系统建设和创新研究对CTD的性能
波浪是一种复杂的海洋水文现象,对海上运输和海岸工程的安全有着直接影响,波浪的观测有着深远的现实意义。在诸多波浪观测仪器中,测波浮标有着可以长时间自动测量、布放位置自由、成本低、精度高的优点,目前是最主要的测波仪器。国内已经有相对成熟的波浪浮标,但均只输出统计特征值,没有波浪谱特征估计功能。波浪方向谱能够直观体现能量在频域和方位上的分布,给出波浪的内部构造,展示出其中风浪与涌浪的信息,同时谱特征值也
结构在服役过程中,由于外部荷载、服役环境和材料内部因素的共同作用,其强度、承载能力、可靠度等随时间逐渐降低,严重威胁其安全有效服役。可靠度是衡量结构安全程度的重要指标,因此对服役期间的结构进行时变可靠度分析,以及据此对其进行恰当的维修是十分重要的课题。不同的维修策略,包括维修次数、维修时间以及维修方式,对应于不同的结构性能改善以及费用。因此,确定结构在服役过程中的最佳维修策略对其安全性和经济性的平
个人信息权益的性质一直存在比较明显的争议,所以《中华人民共和国民法典》(以下简称《民法典》)当中并没有使用"个人信息权"的表述。依据《民法典》中的相关个人信息保护规定可以明确自然人对其个人信息享有的是作为民事权益的人格权益,其并不属于公法的权利。自然人个人的信息权益可以涵盖以及保护其所享有的人格利益以及经济利益,对于作为财产权的个人信息权益也不需要再确认。根据我国法律可以了解到,自然人就其个人所享
钠离子通道是镶嵌在细胞膜上的将钠离子由细胞外转运到细胞内的大分子跨膜蛋白。钠离子通道在动作电位产生的去极化过程中有重要作用,主要分布在肌肉细胞、神经元、神经胶质细胞中。根据启动方式的不同,钠离子通道可以分为电压门控型和配体门控型。心脏钠离子通道属于电压门控型通道,参与心肌细胞动作电位的产生和传导过程。心脏钠离子通道是一个蛋白复合物,其核心部分为α亚基,而β亚基及其它调节蛋白也是钠通道蛋白复合物的重
由于高能粒子引起的级联碰撞作用,核反应堆中的压力容器与核燃料包壳在材料内部将会产生大量的空位与间隙原子点缺陷对。空位在多物理场(包括温度场、应力场、化学浓度场)环境下将逐渐聚集、演化为各种不同类型的空位型辐照缺陷。实验证据表明:辐照硬化、脆化、蠕变等材料辐照效应与空位型缺陷和材料的塑性变形载体的相互作用密切相关。空位型缺陷处于微米、纳米甚至是亚纳米量级,仅依靠单纯的实验方法无法全面地认识和理解由“