碳纳米管增强炭石墨材料的改性及性能影响研究

来源 :西南交通大学 | 被引量 : 0次 | 上传用户:hahabiaoren
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
铁路运输的高速度、高密度和大运载量发展使得电力机车的受流部件面临着严峻的考验。列车依靠弓网系统滑动摩擦取流,在运行时受电弓滑板要面临遭受接触线冲击碰撞、离线燃弧烧蚀以及恶劣环境侵扰的问题。因此,受电弓滑板材料需满足高强度、高导电、高耐磨等综合性能要求。然而,现役纯碳滑板用炭石墨材料本身作为一种多相、多组分、结构型的复合材料,受原料性质和制备工艺的影响存在裂纹、孔隙等内部缺陷,呈现出非均质的特征,在实际应用中存在机械强度低、服役寿命短等问题。因此,从基体先天性缺陷调控角度对炭石墨材料进行机械性能提升将是纯碳滑板材料服役性能优化升级的关键。本文针对沥青基炭石墨材料先天性结构缺陷问题,选用与碳基体有良好相容性的碳纳米管作为结构缺陷的调控材料,从提升碳纳米管在材料中的分散和增强材料的结构构筑角度出发,设计出“碳纳米管油酸修饰-煤沥青熔融共混引入-复合材料综合制备”的碳纳米管分散引入及复合材料制备方式。借助经油酸修饰的碳纳米管在煤油溶液中良好的分散性,沥青原料与煤油的“相似相溶”性,采用碳纳米管的煤油分散液与沥青原料“熔融共混”的方式先将碳纳米管均匀分散于粘结剂沥青之中,之后借助制备过程中粘结剂沥青对原料颗粒的包覆与粘结作用,在基体各相物质间构建起碳纳米管增强的三维骨架网络结构。通过对炭石墨材料各制备阶段碳纳米管的分散状况及材料的综合性能进行表征与分析,发现该种方法可使碳纳米管在基体中得到有效的分散,当碳纳米管改性含量为0.1%时,一次焙烧和浸铜材料的抗折强度分别提高了32.1%和31.4%,材料的磨损率最高下降了39.4%,材料的导电性则受影响不大。同时,文中对碳纳米管在材料中的缺陷调控作用和性能影响机理也进行了解析。本研究将为高性能碳基受电弓滑板材料的研制工作提供理论支撑和科学指导。
其他文献
轮对作为铁路列车的核心部件,其健康状态对列车运行安全至关重要。轮对长时间处于恶劣的工况中,持续承受交变载荷的影响,极易萌发疲劳裂纹等故障。若不及时发现和排除轮对裂纹故障,持续的裂纹扩展可能会导致车轴断裂,威胁列车的安全运行,造成人员伤亡和财产损失。因此,在列车的运行过程中,开展轮对裂纹等故障的在线检测,实现轮对故障类型的诊断和裂纹参数的定量识别,对提高铁路列车的安全性能有重大意义。本文以某动车轮对
类风湿性关节炎(Rheumatoid arthritis,RA)是一种伴随有严重的慢性滑膜炎症和细胞浸润的复杂的自身免疫性疾病。RA患者的关节会出现肿胀、软骨损伤、间隙变窄以及关节功能障碍,严重时会造成不可逆的残疾。目前针对RA的治疗方案主要以延缓疾病进程和减少关节炎症为主。随着纳米技术和生物材料的发展,通过纳米载体负载药物,将其递送至炎症部位发挥疗效已经成为治疗RA的有效策略。研究表明,纳米载体
随着网络通信技术特别是移动互联网技术的飞速发展,网络应用业务和用户数量迅速增加,现代互联网的应用方式发生了巨大变化,其网络流量随之发生了较大变化。相比于传统互联网流量,现代互联网包含了更多即时通信和音视频流量。网络应用方式及用户参与行为的变化,导致现代互联网流量特性与传统流量特性有所不同,这对网络流量监管和网络管理等产生重要影响。本文以现代互联网流量为研究对象,进行流量特性分析和流量建模,在此基础
Al-Cu合金具有良好的高低温力学性能和耐磨性能,广泛应用于航空航天、建筑制造与装备等领域。Cu含量对Al-Cu合金的力学性能有着重要的影响。目前对Cu含量在5%以内的Al-Cu合金研究较多,而对于Cu含量超过10%的研究则鲜有报道,但是Cu含量的增加有利于提高Al-Cu合金的高温强度和耐磨性能,因此本文系统地研究了高含Cu含量对Al-Cu合金拉伸性能及磨损性能的影响。同时对比研究了液态压铸和流变
随着化石燃料的减少,全球掀起了对可再生能源和能源转换技术的研究热潮。在燃料电池和锌空气电池领域中,正极催化剂材料的催化活性、寿命以及成本成为了限制储能装置发展的瓶颈。通常电池正极采用的主要是贵金属铂基催化剂,但高昂的价格、易中毒、循环稳定性差限制了其大面积商业应用。因此,研究开发成本低、催化活性和稳定性较高的催化剂以取代贵金属催化剂具有重大意义。本论文以富含缺陷和含氧官能团且易于锚定和负载金属纳米
随着电气化高速铁路的交通运输体系占比逐年升高,这为加速构建碳中和电力网络体系贡献着不可替代的作用。由于高比例接入牵引供电网的变流器的电力电子变换作用,车-网耦合系统的可控性与能量传输的优质性得到了充分的体现。然而,这也提高了车-网耦合系统的交互失稳的风险。一直以来,人们侧重于研究交互失稳的低频振荡故障,但考虑谐振不稳定现象的研究文献则较少,从而阻碍了其在复杂实际工况中长期稳定运营的保障,其所导致的
近年来,我国轨道交通发展迅速,取得了举世瞩目的成就,但电分相和以负序为主的电能质量问题始终制约其进一步发展。电力机车通过电分相时机电过程复杂,容易出现故障并造成速度和牵引力损失,是牵引供电系统中最薄弱的环节。另外,电能质量关系着电力系统的安全经济运行,随着电气化铁路高速化与重载化,牵引供电系统中负序、无功、谐波等电能质量问题也亟待解决。目前,以同相供电装置为基础的贯通同相供电技术被认为是解决这些问
随着光伏发电技术的不断发展和各大城市轨道交通网络的加速建设,光伏电池在市域城轨列车和短途城际列车上的应用将是未来轨道交通新能源领域的发展方向之一。目前,对城市轨道交通车载光伏发电技术的研究仍然较少,搭载光伏电池的商业化城轨列车仍然处于探索阶段。城轨列车车载光伏面临三个方面的问题:一是城轨列车快速行驶过程中可能出现的光照快速变化带来的最大功率追踪难问题;二是在城轨列车运行线路环境条件下,光伏电池面对
高温超导(HTS)磁悬浮列车的运行需外界磁场与高温超导体相互作用并利用磁通钉扎特性来提供悬浮力以及导向力;因此,外界磁场变化会影响悬浮力、导向力以及在运动方向产生影响。同时,外界磁场的变化也会导致高温超导体内部产生交流损耗和内部温度升高,过大的温升将影响高温超导体的稳定性。所以研究外界磁场变化对于高温超导体的电、磁、热等特性的影响对于磁悬浮列车的运行稳定性有重要的意义。目前,高温超导磁悬浮的动态特
磷酸钙基骨水泥(Calcium Phosphate Cement,CPC)材料因其良好的生物相容性和骨传导性,成为常用的骨修复材料之一。但CPC力学强度不足和固有的脆性限制了其临床应用。另传统的CPC骨修复支架制备方式难以构建复杂结构并精确匹配骨缺损。受自然骨“无机/有机”复合结构的启发,通常将有机组分加入CPC提高其力学性能。然而,在水环境下有机组分与CPC间的低相互作用,以及有机组分自身的低力