碳化硅纳米颗粒增韧碳化硅陶瓷的制备及力学性能研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:yucunjiang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
SiC陶瓷材料具有密度低、强度高、硬度大、耐高温、导热快等诸多优点,在航空航天等领域中具有十分广阔的应用前景。但是SiC陶瓷材料断裂韧性较低以及常压烧结难致密等缺点极大的限制其在实际中的大规模化生产应用。而相比于其他增韧方式,颗粒增韧制备工艺简单,生产成本较低,更适用于大规模工业化生产。本文通过SiC陶瓷基体中引入SiC纳米颗粒来提高常压烧结SiC陶瓷的致密性和断裂韧性,并对SiC纳米颗粒的作用机制进行了讨论。首先以亚微米级的SiC粉为原料,SiC纳米颗粒作为增韧相,以常压固相烧结法制备了不同SiC纳米颗粒添加量的SiC陶瓷。对不同纳米颗粒加入量的SiC陶瓷的致密性和性能进行了讨论,当SiC纳米颗粒的加入量为5 wt%,制备出的SiC陶瓷性能最佳,体积密度为3.166 g/cm~3,弯曲强度为520 MPa,维氏硬度为22.13 GPa,断裂韧性为4.07 MPa·m1/2,压缩强度为3473 MPa,30℃~1000℃内平均线膨胀系数为4.614×10-6 K-1。然后对不同SiC纳米颗粒添加量SiC陶瓷制备过程中的造粒粉、素坯与预烧结体微观结构进行了探讨,分析了SiC陶瓷材料的断裂面以及发生断裂时的裂纹扩展形式,以此来分析了SiC纳米颗粒的增强机制。少量的SiC纳米颗粒可以均匀填充部分亚微米颗粒间的缝隙,加快烧结过程中的传质作用,促进气体排出,减少气孔等缺陷产生,促进致密化,提高材料的弯曲强度、维氏硬度、压缩强度、热导率以及减小热膨胀系数。在烧结过程中SiC纳米颗粒发生相转变,起到相变韧化的作用;纳米颗粒增强了晶界,使陶瓷发生穿晶断裂;断裂过程中还有裂纹偏转现象,这都增大了裂纹扩展所需的能量,从而提高了SiC陶瓷的断裂韧性。而过多的SiC纳米颗粒会引起纳米颗粒的团聚,不利于陶瓷的致密化,从而导致陶瓷性能下降。最后对SiC纳米颗粒增韧的SiC陶瓷的实际意义进行了评价。制备的SiC纳米颗粒添加量为5 wt%的SiC干气密封环,其高速旋转下的线速度可以稳定在200 m/s,与常规SiC干气密封环的极限线速度相比提高了20%,还具有优异的耐腐蚀性能和抗高温氧化性能,可以满足实际需要。
其他文献
光催化技术已被用于可再生能源的生产和储存,以及环境的修复和保护,特别是用于处理污染的空气和水。铅卤钙钛矿具有强可见光吸收、高吸收系数、低激子结合能和长电荷载流子扩散长度等优良特性,在太阳能应用中已成为理想的候选材料。但单相钙钛矿具有光生载流子复合严重的问题,限制了其在光催化领域使用的范围和条件,因此对其改性具有十分重要的意义。本论文以甲胺溴化铅(MAPb Br3)为研究对象对其进行改性,制备了MA
金刚石是目前使用的材料中硬度和热导率极高的物质,在微电子材料、光学材料、硬质镀膜等领域有广泛的应用。但是天然生成金刚石需要苛刻的高温高压环境,故天然金刚石在自然界中储存量很小。使用高温高压法合成的金刚石由于受到模具的限制,不能够大规模生成金刚石,合成出的金刚石也会含有微量的金属催化剂,性能较低。化学气相沉积技术具有沉积质量高、沉积过程稳定的优点,是目前合成金刚石薄膜最佳的方法,但目前人们对金刚石沉
传统的细菌培养监测是在开放体系中进行的,对培养条件的控制有限,难以针对单个或少量细菌进行分析。随着培养技术的进步,在单细胞水平上进行细菌培养越来越受到重视,可以更直观地分析细菌行为。巨型磷脂囊泡由磷脂分子自组装而形成,可提供一个可控的空间受限的封闭空间,通过对磷脂双层膜进行修饰,可实现内外物质交换,因此囊泡可作为细菌的微培养室。巨型磷脂囊泡的内部空间是有限的,故细菌在其中的生长行为与开放体系会有所
噬菌体是细菌宿主基因组中的一种胞内形式,它在细菌DNA中呈现出的高特异性能够帮助水平基因转移(HGT)。随着在基因组学或宏基因组学研究中发现的微生物序列呈指数增长,对能够快速,准确识别噬菌体的工具提出了巨大的需求。在这里,我们介绍DBSCAN-SWA,这是一种命令行软件工具,其主要功能是细菌基因组中原噬菌体区域的识别与注释。方法:首先,搭建、开发关于预测并注释原噬菌体区域的服务器环境、工具与算法。
多金属氧酸盐(Polyoxometalates,缩写为POMs,简称多酸)是一种多核金属氧簇,具有多样的组成与结构,在催化、医学、磁性和材料科学等领域有着广泛应用。其中,钴取代型多钨酸盐具有优异的光催化和磁学性质,但是目前合成的该类型的化合物较少,而且局限于合成单一配体桥连的钴取代型多钨酸盐。本研究在分子设计合成思想指导下,使用缺位型多钨酸盐为基本构筑单元,加入过渡金属钴形成[Co4O3(A‐α‐
水作为反应溶剂相比于传统有机溶剂具有安全、廉价、无毒、无污染等特点。水相有机反应通过以水作为反应介质,可以避免有机溶剂的使用,从而解决有机溶剂带来的毒性、易燃易爆性以及对环境的危害问题,是绿色化学的重要研究方向。喹唑啉酮类化合物是一种在天然产物、合成药物和生物成像等领域有着重要的应用的有机中间体。由于喹唑啉酮类化合物的重要价值,其合成研究一直受到重视,但传统的合成方法不仅需要苛刻的反应条件,或者使
苦咸水淡化已经成为解决目前国内外淡水资源短缺以及提供清洁安全的生活、生产用水的有效途径之一。纳滤膜以其低运行成本和优越的截留性能,确立了它在苦咸水淡化领域中的重要地位。但是传统的薄膜复合(TFC)纳滤膜在渗透性和选择性之间存在的“权衡”效应,“权衡”效应的存在限制了纳滤膜的进一步发展。此外,纳滤膜还面临浓差极化和膜污染等问题,膜污染会引起渗透通量的衰减,缩短膜的使用寿命。因此,在不牺牲选择性的前提
半导体光催化技术,是一种以半导体材料为催化剂,利用太阳光能催化降解有机污染物、光解水制备H2和催化还原CO2制备CH4等清洁能源的新兴技术,在治理环境污染和解决能源短缺这两大问题上具有非常广阔的发展前景,受到人们的广泛关注。半导体光催化材料的性能高低,受材料的光吸收能力、光生载流子分离效率、传递效率、光生载流子氧化还原能力等多种因素影响。根据文献报道,掺杂过渡金属离子引入缺陷、构建Z型异质结是提升
碳化硼(B4C)具有密度低、熔点高、超高硬度、热电性能优异以及良好的中子吸收能力等特点,被广泛应用于核工业、磨料、军工、电子和工程结构件等领域。然而,碳化硼强共价键结合的特点,使B4C陶瓷具有难烧结、难致密和断裂韧性低等缺点,严重限制了B4C陶瓷在工程领域和军工领域的应用。为了解决上述问题,本文通过引入第二相的方法改善B4C的烧结性能,向B4C基体中引入铝(Al)或碳纳米管(CNTs)来制备碳化硼
金属有机骨架(MOFs)由于其具有孔道结构可调节、组装方式多样性、网络结构丰富、结构稳定等特性,而受到广泛关注。MOFs在气相催化、气体存储与分离、质子传导、生物成像、小分子传感等领域具有广泛的应用前景。近年来,以功能特性为导向,许多具有新颖结构的MOFs不断被获得,例如以荧光检测为导向,许多具有优异发光性能的MOFs已经被开发出来,并用来检测各种对环境和人体有害的小分子化合物、硝基爆炸物、阴阳离