水相体系中酸介导的重排反应合成喹唑啉酮类化合物

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:coolboywcp
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
水作为反应溶剂相比于传统有机溶剂具有安全、廉价、无毒、无污染等特点。水相有机反应通过以水作为反应介质,可以避免有机溶剂的使用,从而解决有机溶剂带来的毒性、易燃易爆性以及对环境的危害问题,是绿色化学的重要研究方向。喹唑啉酮类化合物是一种在天然产物、合成药物和生物成像等领域有着重要的应用的有机中间体。由于喹唑啉酮类化合物的重要价值,其合成研究一直受到重视,但传统的合成方法不仅需要苛刻的反应条件,或者使用有毒过渡金属催化剂,强氧化剂等,且需要大量有机溶剂的使用,并不是一种理想的合成方法。因此,喹唑啉酮类化合物的绿色合成方法研究显得尤为重要。本论文通过水溶性小分子酸介导N-(2-(4,5-二氢噁唑-2-基)苯基)酰胺的重排反应,成功实现了以纯水作为反应介质合成喹唑啉酮类化合物,提出了一种绿色,简单的合成喹唑啉酮类化合物的方法,该方法不需要有机溶剂以及过渡金属催化剂的使用,避免有机溶剂对环境的危害。并且通过对反应条件进行优化,该反应在室温下获得了一个极高的产率,条件温和,操作简单,绿色高效,对喹唑啉酮类化合物的绿色合成研究具有重要的意义。此外,本论文在自由基捕获实验基础上,提出了一种可行的反应机理。底物N-(2-(4,5-二氢噁唑-2-基)苯基)酰胺吸附质子形成缺电子中心,水亲核加成后发生质子转移使噁唑基开环形成伯醇结构,接着质子介导分子内氨基和羰基缩合成环,最后脱水形成碳氮双键,脱去质子完成重排形成2-取代-3-(2-羟乙基)喹唑啉-4(3H)-酮。最后,本论文在最佳反应条件下对13种脂肪取代底物,5种芳香取代底物进行了底物适应性考察,结果表明,反应对位阻不大的底物,可以获得很高的产率,并且在克级规模下进行反应,获得了89%的产率,证明反应具有很好的应用前景。
其他文献
在物探领域,地震勘探法是勘探资源的最重要手段。其基本原理是通过人工激发弹性波并记录岩层界面的反射波与折射波,通过分析波形而认识地质构造。实际地震勘探应用中,常使用地震检波器拾取振动信号,磁电式地震检波器因其高信噪比、接口方便、结构稳定等特点被广泛使用。随着地质勘探的由浅表层向深层勘探的深入,需要提高检波器拾取低频信号的性能,磁电式地震检波器对低频信号的响应与其自身机械结构的参数相关,当从检波器机械
在众多的能源体系中,氢气无疑是清洁能源储存转换的理想载体。电解水制氢被认为是制取高纯氢气的有效方法;然而,其正极析氧过程较高的过电位严重影响了电解水效率的提高。目前,RuO2、IrO2等贵金属氧化物被认为是活性最高的析氧催化剂,但稀缺的资源限制了其在工业中的应用。基于此,本论文开发设计了由硫代乙酰胺(TAA)与NiCl2络合物TAA-Ni水解得到的高活性的非晶NiSx,并通过浸泡法将非晶NiSx负
石油、煤炭及天然气等化石燃料过度开发以及产物造成的环境污染一直是经济飞速发展过程中亟待解决的问题。为解决以上问题利用可见光光催化分解水产生氢气引起广泛研究兴趣。一方面可利用的太阳光以及水等自然资源取之不尽用之不竭,另一方面氢气作为一种理想二次能源具有热值大、产物无污染等优点被广泛应用于工业生产当中。然而利用半导体作为光催化剂在可见光下分解水产氢的过程中由于光激发产生的电子空穴对复合严重,相应的光催
人造胶体马达具有种类多样、易于控制和运动尺度大的优点,在精准医疗、环境修复等领域有着广阔的应用前景。在人造胶体马达的运动控制方法中,可见光控制的方式有着易于控制、环境友好度高的特点。本论文制备了两种基于可见光催化材料和铂金属的人造胶体马达,可在可见光的调节下实现快速的运动,并实现了可见光对人造胶体马达运动的有效调控。首先对二氧化硅微球模板应用熔融盐浸渍、高温煅烧、磁控溅射技术制备了氮化碳基Pt/g
生物细胞内的无膜细胞器如核仁、应激颗粒等一般是由相分离导致的凝聚体。凝聚体在细胞内相对独立,其内部分子浓度较高,可保障反应顺利进行且不受干扰。体外构建的凝聚体除了用于细胞器模拟,还可作为微反应器实现特定反应。凝聚体可通过p H、温度、无机盐浓度、聚合物浓度、光照等条件的调控实现解聚。磷脂作为细胞膜的主要组分,其形成的囊泡可作为人造细胞的模型。基于此,本论文以聚赖氨酸(Ply)/ATP凝聚体作为基础
光催化技术已被用于可再生能源的生产和储存,以及环境的修复和保护,特别是用于处理污染的空气和水。铅卤钙钛矿具有强可见光吸收、高吸收系数、低激子结合能和长电荷载流子扩散长度等优良特性,在太阳能应用中已成为理想的候选材料。但单相钙钛矿具有光生载流子复合严重的问题,限制了其在光催化领域使用的范围和条件,因此对其改性具有十分重要的意义。本论文以甲胺溴化铅(MAPb Br3)为研究对象对其进行改性,制备了MA
金刚石是目前使用的材料中硬度和热导率极高的物质,在微电子材料、光学材料、硬质镀膜等领域有广泛的应用。但是天然生成金刚石需要苛刻的高温高压环境,故天然金刚石在自然界中储存量很小。使用高温高压法合成的金刚石由于受到模具的限制,不能够大规模生成金刚石,合成出的金刚石也会含有微量的金属催化剂,性能较低。化学气相沉积技术具有沉积质量高、沉积过程稳定的优点,是目前合成金刚石薄膜最佳的方法,但目前人们对金刚石沉
传统的细菌培养监测是在开放体系中进行的,对培养条件的控制有限,难以针对单个或少量细菌进行分析。随着培养技术的进步,在单细胞水平上进行细菌培养越来越受到重视,可以更直观地分析细菌行为。巨型磷脂囊泡由磷脂分子自组装而形成,可提供一个可控的空间受限的封闭空间,通过对磷脂双层膜进行修饰,可实现内外物质交换,因此囊泡可作为细菌的微培养室。巨型磷脂囊泡的内部空间是有限的,故细菌在其中的生长行为与开放体系会有所
噬菌体是细菌宿主基因组中的一种胞内形式,它在细菌DNA中呈现出的高特异性能够帮助水平基因转移(HGT)。随着在基因组学或宏基因组学研究中发现的微生物序列呈指数增长,对能够快速,准确识别噬菌体的工具提出了巨大的需求。在这里,我们介绍DBSCAN-SWA,这是一种命令行软件工具,其主要功能是细菌基因组中原噬菌体区域的识别与注释。方法:首先,搭建、开发关于预测并注释原噬菌体区域的服务器环境、工具与算法。
多金属氧酸盐(Polyoxometalates,缩写为POMs,简称多酸)是一种多核金属氧簇,具有多样的组成与结构,在催化、医学、磁性和材料科学等领域有着广泛应用。其中,钴取代型多钨酸盐具有优异的光催化和磁学性质,但是目前合成的该类型的化合物较少,而且局限于合成单一配体桥连的钴取代型多钨酸盐。本研究在分子设计合成思想指导下,使用缺位型多钨酸盐为基本构筑单元,加入过渡金属钴形成[Co4O3(A‐α‐