电磁阵列织针驱动结构设计及优化

来源 :武汉纺织大学 | 被引量 : 0次 | 上传用户:liongliong468
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对现有针织机械,难以进行大幅度的效率提升的问题,本文打破传统针织机械的织针驱动原理的限制,提出了一种新型电磁阵列式的混合磁悬浮织针驱动方法,通过测量织针的上升高度,实时的控制并改变电磁线圈加载的电流大小、方向和机头的横向位移,进而使织针能根据设定的编织工艺动作。本文通过研究电磁线圈和永磁铷铁硼的空间磁场分布规律,分析永磁织针与电磁线圈的混合磁悬浮驱动系统中永磁织针运动高度与电磁力的关系,获得永磁织针驱动过程的重要技术指标,并以此为参考设计了一种电磁阵列织针驱动结构。在此结构基础上,以永磁织针和电磁线圈外部轴向磁感应强度的分布规律为基础,建立了永磁织针的磁场数学模型、电磁线圈的电磁场数学模型、电磁-永磁悬浮驱动数学模型与电磁阵列织针磁场模型,获得永磁织针的运动学方程,为研究永磁织针运动规律提供了重要的理论依据。结合磁悬浮织针的驱动模型,在单一式电磁永磁织针驱动结构的基础上,对驱动磁悬浮织针的电磁线圈电流的控制,设计一种基于STM32和全桥驱动电路的磁悬浮织针电磁线圈电流闭环控制器。并在Simulink软件中建立控制系统和PID调节仿真模型,在给定电流激励的条件下,获得了电磁线圈电流响应的时序图,仿真结果表明该控制器能够对织针悬浮驱动电流进行快速和稳定的控制。本文在前期研究的单一式电磁永磁织针驱动结构的基础上,创新设计了一种新型的电磁阵列式织针驱动结构,该结构通过阵列电磁线圈产生驱动合力,增大了织针的悬浮驱动力,提升织针的运动速度,提高针织机械的编织效率。其次,通过优化电磁阵列驱动结构,获得最佳的针织轴向驱动力,从而达到最优结构设计的目的。在最优结构的基础上,通过对阵列式驱动结构的耦合磁场进行数学模型推导和有限元仿真,拓展设计基于阵列式混合电磁悬浮驱动的针织机结构,搭建简易实验平台对电磁阵列式针织横机的驱动性能进行实验测量,验证该方案的合理性及可行性。
其他文献
放射性肠损伤是高剂量辐射导致的一类疾病,由于辐射引起肠道干细胞急剧受损,上皮再生受阻以及粘膜屏障丧失,致使机体电解质紊乱、腹泻、细菌流入全身,引发败血症。肠上皮的高放射敏感性,使得针对腹部恶性肿瘤的常规放射治疗受到限制,并使核事故受害者的生存率大大降低。虽然使用抗生素,水合作用和骨髓移植的支持治疗可以避免因造血综合症而导致的死亡,但目前缺乏有效保护或缓解放射性肠损伤的疗法,因此探讨肠道放射损伤的新
广藿香[Pogostemon cablin(Blanco)Benth]以叶、梗入药,具芳香化湿、和胃止呕、祛暑解表的功效,是著名的“十大南药”之一,也是市场需求量最大的南药品种之一,目前资源较为紧缺。由Ralstonia solanacearum(青枯菌)浸染引起的青枯病(bacterial wilt),是广藿香种植过程中危害最为严重的系统性病害。目前青枯病的发病率居高不下,严重威胁广藿香产业的生
近年来耐甲氧西林金黄色葡萄球菌(Methicillin-resistant Staphylococcus aureus,MRSA)不断增多,现已成为全球院内感染的首要病原菌,临床上可供选择的药物极少,已成为难以治疗的“超级细菌”,严重危害人类健康。糖肽类抗生素万古霉素是治疗MRSA感染的“最后防线”,但近来也发现耐万古霉素金黄色葡萄球菌。新近上市的利奈唑胺和达托霉素等抗MRSA药物也相继发现耐药菌
研究目的:分析广东省某市2013-2019年手足口病病例资料,并了解其发病流行特征及规律。基于移动流行区间法(mem)建立手足口病预警模型,制定流行阈值并划分流行期,实现流行水平分级。评价mem模型在手足口病双峰分布型资料上的可行性。基于分布滞后非线性模型(dlnm)建立以气温为主要自变量的逐日时间序列模型,分析日均气温对手足口病的非线性作用。研究方法:通过传染病报告系统收集广东省某市2013-2
智能纺织品是一种典型的智能材料,它能够感知各种来自环境的变化或刺激(如力、电、光、磁、热及化学环境等),并做出响应,目前已被广泛的应用于探测传感、航空航天、医疗保健、以及运动娱乐等领域。与传统的传感器相比,织物基传感器具有可拉伸、可弯曲、可穿戴、可折叠及可洗涤的特点,更适合于非平面结构的使用,且织物基传感器弹性好,作为应变传感器使用时比传统的金属应变片工作范围更广。但是目前的柔性应变传感器存在灵敏
随着信息技术的快速发展,高功率的电磁辐射造成的环境污染问题引起人们的广泛关切。现有的屏蔽体材料(金属板)存在着比重大、柔性差等缺点,难以满足诸如轻量、可穿戴等复杂应用需求。而普通纺织材料的电磁学参数不能达到如金属、半导体所具有的数量级,不具备任何电磁功能。如何设计轻质多孔的电磁干扰屏蔽材料以满足与可穿戴电子相关的应用领域已经成为当前研究的热点。本文使用湿化学法、磁控溅射和冷冻干燥等技术得到了具有轻
智能纺织品在个人体温管理、可穿戴人体运动监测和医疗保健等方面的潜在应用受到越来越多的关注。由于纺织品固有的亲水性导致纺织品易被污染,给实际使用带来很多不便。同时,柔性可穿戴纺织品在实际使用中容易受到机械和微生物的攻击,如出汗、磨损、弯曲、细菌交叉感染等。因此,如何制备具有防水、电热响应、机械敏感和抗菌性能的多功能电子纺织品仍是一个挑战。本文对多功能电子纺织品的研究进展进行综述和分析,以具有柔软、透
碳量子点(CQDs)作为一种新型荧光纳米材料受到广泛的关注。由于其具有水溶性好、毒性低、制备简单以及独特的光学性质被广泛地应用在生物/化学传感器、光催化和细胞成像等领域。鉴于CQDs在紫外光区具有很强的吸收能力,因此可用作棉织物防紫外线整理剂。本文采用水热合成法合成了三种不同碳源的硼氮共掺杂碳量子点(BN-CQDs),表征了所制备BN-CQDs的结构和光学性质,并通过表面喷涂-碾轧和棉织物纤维素改
水玻璃砂是最环保的型砂之一,在铸造型砂中,水玻璃砂最有可能实现无公害化,符合21世纪对环保绿色生产制造的需求。在传统的型砂铸造工艺中,复杂模具设计加工工艺流程比较复杂、产品的研发周期长,企业的生产成本高。随着微波装备和三维打印的快速发展,微波无模硬化水玻璃砂工艺实际应用已成为可能。三维打印-微波硬化打印原理是:铺平一层一层的原砂,使用液态水玻璃作为粘结剂并通过喷嘴一层一层的粘结原砂,然后微波硬化。
提升黄河流域城市能源利用效率既有助于实现"碳达峰"和"碳中和",又有助于黄河流域生态保护和高质量发展。基于非径向方向性距离函数、非径向Luenberger指数及分解项、Tobit模型探讨了2003-2018年黄河流域城市能源利用效率的时空特征、内生驱动机制与外部影响因素。研究发现:2003-2018年间黄河流域城市能源利用效率整体上表现出波动上升态势,且能源利用效率的增长主要来自能源经济效率的改进