可见光诱导下的邻苯二甲酰亚胺酯的脱羧偶联反应研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:nannalee
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
N-酰氧基邻苯二甲酰亚胺酯是一类在有机合成中常用到的脱羧试剂,在过去的几十年里有机化学家利用它实现了各种各样的反应。本研究开发了一种新颖的N-酰氧基邻苯二甲酰亚胺烷基羧酸酯作为酰亚胺化试剂使N-甲基苯胺的氮邻位C-H活化,成功构建了C-N键,合成了一系列叔胺的酰亚胺化产物。利用N-酰氧基邻苯二甲酰亚胺烷基羧酸酯作为酰亚胺化试剂具有原料容易制备,价格便宜的特点,同时新颖地利用了可见光这种绿色的合成方法,相比较传统的热化学合成具有条件温和、污染小的优点。研究了可见光诱导下叔胺的氮邻位碳的酰亚胺化的绿色合成新方法。设计了以N-烷基取代的苯胺为底物,N-酰氧基邻苯二甲酰亚胺烷基羧酸酯为酰亚胺化试剂。可见光的诱导下的最优条件下,合成了一系列的叔胺氮邻位碳的酰亚胺化产物。本文开发的叔胺酰亚胺化的方法具有比较好的普适性(23%-72%的产率)。自由基捕捉实验的研究表明经过了自由基-自由基交叉偶联反应的过程,在可见光的诱导下,叔胺为被激发的光催化剂夺去一个电子形成氮正自由基,在碱的作用下脱去一个质子形成α-碳自由基,被还原的光催化剂给了一个电子给N-酰氧基邻苯二甲酰亚胺烷基羧酸酯,发生N-O键的断裂,生成N-羟基邻苯二甲酰亚胺自由基,最后两个自由基发生交叉偶联反应得到最终的酰亚胺化产物。探索性地利用烷基羧酸与N-酰氧基邻苯二甲酰亚胺肉桂酸酯在可见光的诱导下进行了双脱羧偶联反应,得到了最终的双脱羧产物。设计的反应机理是N-酰氧基邻苯二甲酰羧酸酯在光催化剂的作用下产生烯基自由基,然后进攻烷基自由基,构建Csp~3-Csp~2的交叉偶联反应。在可见光的诱导下,摸索了一系列的优化反应条条件,探索了光源、催化剂、添加剂等对反应的影响。
其他文献
针对现在工厂中加工的薄壁平衡块内孔椭圆变形问题进行工艺优化分析。影响薄壁零件变形的主要因素是切削应力和装夹,因此优化工艺减少切削应力造成的工件变形,把原有的手动工装改为液压工装,以减少装夹造成的变形,改善薄壁平衡块因加工变形导致的加工质量问题。
G-四链体(G-quadruplexes)是人类基因组广泛存在且与基因转录、表达以及细胞的生长、凋亡密切相关的核酸二级结构。形成这种特殊结构的DNA或RNA序列通常具有富含鸟嘌呤(G)的
在测绘地理信息领域中,最小二乘法(least squares,简称LS)是最基本的也是应用最为广泛的数据处理方法,但是这种方法的应用有一个前提条件,那就是该方法在进行参数估值计算时认为系数矩阵中是不存在偶然误差的,偶然误差只存在于观测向量中。然而在具体的数据采集过程中,由于受到各种实际条件的限制,从而使得系数矩阵不完全精确,为了考虑系数矩阵中可能存在的偶然误差,在近几十年中发展了总体最小二乘法(t
N~6-methyladenosine(m~6A)修饰是RNA中腺嘌呤的第六位氮原子上发生的甲基化,其生物学功能受多种甲基化酶、去甲基化酶和识别蛋白调控。m~6A修饰在脊椎动物胚胎发育中起重要
【目的】探讨SREBP1通过Wnt/β-catenin信号通路参与食管鳞癌细胞增殖和侵袭转移的相关机制【方法】(1)基于Oncomine中两个独立数据库分析了SREBP1在食管鳞癌组织和癌旁正常组
以肼(N2H4)作为燃料的直接肼燃料电池(DHFC)因其具有众多优点而受到广泛关注。首先,肼发生电化学氧化反应只产生氮气和水,不会对环境造成污染。其次,肼燃料电池拥有较高的理论电动势(1.56 V)和理论能量密度(5.42 Wh·g-1)。最后,肼燃料电池可以在较温和的温度范围内使用。然而,肼的电化学氧化反应动力学上的缓慢是肼燃料电池面临的关键因素。因此,发展高催化活性的肼燃料电池阳极电催化剂对于
第一部分兔急性颅高压模型的建立目的通过硬膜外球囊压迫法建立稳定的兔急性颅高压动物模型,为探讨控制减压治疗重型颅脑损伤的基础研究提供稳定可靠的动物模型。方法采用硬
目的:探讨血清性激素、促性腺激素及其比值与育龄男性精液质量、精子受精能力及生育力相关关系,并寻找可量化的判断精液参数、精子受精能力及男性生育力是否正常的指标。方法
在当今国际社会,能源和环境问题是一个重要课题。化石能源日渐枯竭,环境问题日益恶化,这些问题都必须有效地解决。现代社会一直在寻找一种清洁、廉价、可再生的新型能源来替代传统的化石能源。而燃料电池和电解水制氢作为新时代最重要的替代性能源之一,在工业应用和基础研究方面都受到了很大的重视。燃料电池的关键在于高效的催化剂的设计,目前最有效的催化剂是Pt基催化剂,然而其高成本和较低的稳定性阻碍了它的商业应用。因
肌动蛋白作为一种球状蛋白质,基本存在于所有真核细胞中,并且可以通过聚合形成丝状肌动蛋白(Actin Fliament,F-actin),是细胞骨架及肌肉收缩装置的基本组成成分。在动物细胞中许多必须的生理过程都需要肌动蛋白的动态变化,如细胞迁移,细胞分裂以及细胞的内吞作用等等。过去的数十年中,F-actin的动力学一直是研究的热点,该领域至今仍然充满了争议以及未知。在这篇论文中,我们发现了一个新的肌