生物基磷酸根吸附材料制备研究

来源 :大连工业大学 | 被引量 : 0次 | 上传用户:dt
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
磷是地球上几乎所有生物生长所必需的营养物质,其在人体中的作用主要是促进骨骼的发育。但是近些年随着工业废水、生活污水的大规模排放,导致了地表水中磷浓度超标,进而造成环境污染问题——水体富营养化。因此,对水体中的磷酸盐进行快速、有效的处理是非常有必要的。吸附法以其成本低、效率高、易于分离、环境友好和稳定性强等优点在废水除磷领域中越来越受欢迎。常用的除磷吸附剂有金属有机框架材料(MOFs)、活性炭、金属氧化物和膨润土等等。但上述吸附剂或多或少存在着吸附性能差、分离困难、机械强度低以及无法回收等缺点,阻碍了其在除磷领域中的实际应用。所以本课题的研究目的是制备环保、高效、可循环且具有选择性的磷酸根吸附剂。生物质由于分布广、可再生且成本低等特点被广泛使用在催化、电磁波吸收和污染物吸附等领域。同时生物质种类繁多,包括大部分动物、植物及其相关有机物,常见的生物质材料比如纤维素、壳聚糖、海藻酸钠和木质素等等。于是前期实验以壳聚糖作为基底材料,利用内部丰富官能团引入金属镧组分后,外部采用原位封装聚多巴胺来制备新型环保复合吸附剂(La-CS@PDA)。扫描电镜下观察到的微观孔道-网络扩散结构不仅有利于磷酸根在材料内部的流动,还为其提供了丰富的吸附位点。通过连续吸附实验后,朗格缪尔(Langmuir)等温线模型拟合出磷酸根最大吸附量为195.3 mg/g。更重要的是,在多种竞争阴离子存在条件下,La-CS@PDA对磷酸根展现出明显的选择性吸附,这可能要归因于复合材料中镧组分的存在。针对模拟实际工业使用的固定床柱研究,吸附实验数据能够较好吻合托马斯(Thomas)模型,并且材料表现出不错的机械强度。后期实验将木质素和金属锆结合,利用曼尼希和共沉淀反应制备了集成氢氧化锆的木质素基除磷吸附剂(AL-DETA@Zr)。通过曼尼希反应改性木质素一方面是为了引入氨基,另一方面是可以使木质素与金属组分更好的结合。采用XRD、TGA、FTIR和XPS等多种表征手段研究了AL-DETA@Zr的相关性能和官能团的变化。温度实验表明,磷酸根在材料上的吸附过程是吸热自发的。在连续吸附循环实验后,AL-DETA@Zr的吸附性能没有明显下降,说明其在测试条件下具有良好的可重复性。同时根据吸附实验数据得知,AL-DETA@Zr热稳定性较好,对磷酸根的吸附速率快,最大吸附量为167.7 mg/g。
其他文献
由于化石资源日渐枯竭,可再生资源木质纤维生物质受到人们广泛关注。作为木质纤维生物质主要组成部分之一,木质素是自然界中唯一具有芳香结构(苯丙烷单元)的天然高分子。与纤维素相比,造纸、生物乙醇等工业过程中产生的工业木质素(作为副产物)没有得到充分利用,大多数被烧掉。如何高效降解木质素生成高附加值小分子“平台”产物,对于实现国民经济可持续发展、节能减排、环境保护具有重要意义。“环境友好溶剂”—离子液体,
学位
利用可再生资源-木质纤维生物质生产燃料和化学品,对于国民经济可持续发展和环境保护具有重要意义。预处理过程可以有效提高纤维素酶水解效率,是生物质高值化利用的重要途径之一。作为“环境友好型”溶剂,离子液体(ILs)在木质纤维生物质利用领域受到广泛关注。近年来,ILs结合稀酸被认为是一种具有发展前景并且经济性佳的生物质预处理策略。该过程整合了低成本无机酸的催化作用和ILs对木质纤维素高效溶解。然而,在酸
学位
随着水体污染问题的不断加剧,人类环保意识的逐步提高,水中有机污染物的处理技术也在不断的发展。近年来,高级氧化技术由于其高的氧化能力引起了研究者们的广泛关注。其中,相比于其它处理技术而言,基于过一硫酸盐(PMS)的高级氧化技术具有较大的应用潜力。由于PMS的不对称结构,它更容易被催化剂活化产生强氧化性的自由基,从而使水中难降解的有机污染物去除。钴基催化材料被认为是活化PMS最有效的手段之一。因此,寻
学位
当今社会,工业科技发展迅速,为人类的生活带来便利,在此过程中,各类功能材料的开发和利用也促进了科技的进步和觉醒。而碳材料作为重要的结构材料和功能材料,因其具有良好的性能,较高的导热系数,良好的化学惰性等等优点,被人们广泛的应用于冶金、机械、电子、化工等领域。但是,由于地球化石资源的储备有限,且再生过程漫长而困难,使得碳材料的发展和应用受到了巨大的限制,寻找更好的资源来解决碳材料的来源问题是当下的热
学位
多重乳液作为一种优良的缓释载体材料,因其特殊的物理结构及优良的缓释效果已在化妆品行业等众多领域引起广泛关注。本文利用泊洛沙姆的温敏相变特性,采用泊洛沙姆水溶液构建多重乳液内水相、碳酸二辛酯为油相、去离子水为外水相、以聚甘油-3二异硬脂酸酯和大豆卵磷脂为W/O型乳液的乳化剂、六聚甘油单硬脂酸酯和十聚甘油单硬脂酸酯为O/W型乳液的乳化剂,采用两步乳化法制备具有温敏特性的新型W/O/W型多重乳液体系。通
学位
在开展小学语文阅读教学时,教师要注重学生的阅读过程,增加阅读活动的深度,积极探索促进学生深度学习的途径,目标指向语文要素,深入分析文本内涵,精心准备教学设计,使教学朝更深层次发展。
期刊
随着世界经济的飞速发展和科学技术的不断进步,稀有金属由于其独特的物理化学性质在风力发电、新能源汽车、合金铸件、催化裂化等领域的需求逐渐增大。从安全生产、绿色环保的角度出发,本论文研究并制备了三齿型酰胺官能团改性的功能化金属有机骨架,深入探索了该金属有机骨架对于稀土和放射性元素的回收利用性能,研究了吸附过程中p H值、浓度梯度、吸附时间和模拟浸出等条件对于吸附的影响,探究了金属有机骨架对稀土和放射性
学位
纳米材料因其优异性能受到广泛关注。与无机纳米材料而言,有机纳米材料的研究才刚刚起步,探究有机纳米材料的制备方法与应用是目前研究的热点之一,具有重要的意义。本文着重探索PET、PA6微纳米颗粒的制备及其在多相催化剂的制备以及环氧树脂复合材料中的应用。本文利用溶剂沉析法,在高剪切力的作用下,制备聚对苯二甲酸乙二醇酯(PET)和聚酰胺6(PA6)两种微纳米颗粒,并利用热场发射扫描电镜(SEM)对其形貌结
学位
当前,日益增长的能源消耗问题促使科学研究人员将更多的目光放在清洁可持续能源的开发和利用上。而在开发和利用新能源的同时,能量储存装置也受到了学者们的广泛关注。在能量存储和转换系统中,超级电容器因其循环寿命长、充放电时间快、功率密度高而成为一种新型实用有效的能量存储器件。影响超级电容器性能的主要因素是电极材料。镍,作为一种重要的过渡金属元素,价态丰富,原料易得,电化学活性高,理论比电容大,是一种理想的
学位
离子液体(ILs)作为新一代绿色溶剂,具有诸多优异的物化性质,在催化反应、萃取分离和电化学等化学化工领域发挥了重要作用。在实际化工过程中,离子液体固液界面普遍存在且界面结构可显著影响其性能。但是界面处复杂的相互作用导致界面离子液体的纳微结构特征及形成机理不够明晰,严重限制界面处构效关系的建立和离子液体性能调控。本论文通过高精度原子力显微镜技术(AFM),系统研究了不同烷基链长度的咪唑类离子液体在典
学位