基于微纳米气泡协同技术对盐酸四环素废水的去除性能研究

来源 :重庆工商大学 | 被引量 : 0次 | 上传用户:DragonJiang2
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,随着工业化的快速发展,水污染环境问题日益凸出,其中抗生素废水的治理已经成为国内外环境领域的研究热点.微纳米气泡(MB)具有停留时间长、比表面积大、界面ζ电位高、传质效率高、产生自由基、自身增压溶解等特性而引起了人们的广泛关注.本研究提出微纳米气泡协同铁碳微电解、过氧化氢技术来降解盐酸四环素(TC)废水,又以微纳米气泡/铁碳微电解-H2O2技术相结合处理实际制药废水,以期为有机废水的治理提供新的解决方法.主要开展以下工作:(1)采用微纳米气泡协同铁碳微电解技术处理盐酸四环素废水,通过X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、氮气吸附-脱附测试(BET)、扫描电子显微镜(SEM)、X射线能谱分析(EDS)对反应前后的铁碳材料进行了结构表征;此外,研究了不同反应时间、铁碳投加量、pH、微纳米气泡进气量对盐酸四环素去除率的影响.结果表明:微纳米气泡对铁碳微电解有显著的协同作用,当反应时间为120min、铁碳投加量为100g·L-1、pH=3、微纳米气泡进气量为30mL·min-1时,浓度为20mg·L-1的盐酸四环素降解率为80.84%,TOC去除率为47.89%,动力学研究分析表明,TC的降解过程符合拟一级反应动力学模型.通过HPLC-MS技术鉴定了TC的可能中间产物,分析了TC的降解机理,结果表明TC分子主要通过去甲基化和碳-碳单键断裂等方式降解为小的中间体,并最终分解转化为CO2和H2O等无机化合物.
  (2)采用微纳米气泡协同H2O2技术处理盐酸四环素废水,研究了MB/H2O2体系在不同影响因素下的降解性能,结果表明:当反应时间为150min、H2O2投加量为30mmol·L-1、pH=3、MB进气量为30mL·min-1时,TC的降解率可达92.43%,动力学研究分析表明,TC的降解过程符合拟一级反应动力学模型.通过响应曲面实验分析结果表明,影响盐酸四环素降解的主次因素顺序为:pH>H2O2投加量>MB进气量,且各因素之间交互作用显著.响应曲面法得到最佳工艺条件:H2O2投加量为31.18mmol·L-1、pH为3.0、MB进气量为29.45mL·min-1,并预测该条件下TC的去除率为88.03%,在最佳工艺条件下测得TC的去除率为89.62%,与理论预测值偏差1.90%,相对标准偏差RSD=2.68%,说明响应曲面法得出的最优工艺参数具有重现性,该模型可信度较高.此外,自由基猝灭和电子自旋共振(ESR)实验表明,?OH、HO2?/?O2-是MB/H2O2体系中的主要活性氧自由基.通过HPLC-MS技术鉴定了TC的可能中间产物,分析了TC的降解机理,结果表明?OH和HO2?/?O2-自由基首先会攻击盐酸四环素分子,导致其发生去甲基化和羟基化、开环反应、异构化、脱乙基、脱酰基、脱胺化和脱水反应,m/z=141、m/z=126、m/z=110和m/z=84等中间体在?OH和HO2?/?O2-自由基的作用下最终转化分解为CO2和H2O等无机化合物.(3)采用微纳米气泡协同铁碳微电解-H2O2技术处理实际制药废水,结果表明:当反应时间为240min、铁碳投加量为200g·L-1、H2O2投加量15mL/L时,COD、TOC去除率分别为43.35%、31.53%,其去除效率均高于其它体系.MB/铁碳微电解-H2O2工艺不仅充分发挥了微纳米气泡的特性,还显著提升了制药废水的降解效率,这项研究工作为今后处理实际制药废水提供了一种新的思路.
  
其他文献
生态空间是指以供生态系统服务为主要目标的地域范围,维护生态空间是协调保护与发展、保障生态服务持续供给的基础。近年来,随着人类社会对自然生态系统控制力的不断高,生态空间持续遭到破坏,引发了一系列生态环境问题。合理、科学地评价生态空间生境质量,对于区域自然资源的持续利用与经济可持续发展之间的平衡有着重要的指导意义,可为生态规划与管理供科学参考。重庆市位于四川盆地与长江中下游平原过渡地带,是中国经济发达
四溴双酚S是一种新型的溴化阻燃剂,被广泛应用在一些工业产品中,然而其能在环境中持久存在,是一种有毒的难降解有机污染物,对人体健康有很大风险。面对这类可生化性差的有机污染物,作为高级氧化技术之一的低温等离子体技术在水处理领域有着广泛的研究和应用,新型介质阻挡放电(DBD)水处理反应器及配套水处理系统的开发也一直是研究热点。本文提出了一种狭缝微通道DBD鼓泡等离子体水处理系统,以同步提高放电强度和鼓泡
氯酚(CPs)是水处理中典型的难降解有毒污染物,具有致畸、致癌、致突变和遗传毒性,其结构中的芳香环和氯原子形成稳定的共轭体系,导致氯酚在环境中很难降解,氯原子数量越多,毒性越强,越难被降解,现已被大多数国家列为优先控制污染物.在众多处理技术中,电催化氢化还原脱氯技术(EHDC)由于高效、无二次污染、操作简单、条件温和等优势具有广泛的应用前景.贵金属钯(Pd)是活性较高的EHDC催化剂,但因地球储量
随着人类社会的快速发展,各类生态环境问题突出,阻碍了人类社会和生态系统的健康发展,为实现和维护人类社会和自然生态系统之间的和谐,满足人类当代及后代发展的需求,探究自然生态与人类社会之间的联系生态系统服务逐渐成为生态学和生态经济学的研究热点。本研究以三峡库区为研究对象,以多源异构数据评估2000、2006、2012、2018年土壤保持、水源涵养、生物多样性、固碳释氧4项主要生态系统服务,基于协同与权
溴代阻燃剂(BFRs)是近年来发展较快的阻燃剂,2017的一项研究表明,中国BFRs的年消耗量约为40万吨。TBBPA是最常用的溴代阻燃剂之一,其在环境中有累计作用,毒性强,对人体有致癌作用。为了减少TBBPA的使用,TBBPS作为TBBPA的替代物出现在大众视野中。TBBPS作为一种新型污染物,缺乏相关法律法规的约束。并且目前关于TBBPS的研究只停留在环境中的TBBPS的定性和定量检测,缺乏关
学位
好氧颗粒污泥膜生物反应器(aerobic granular sludge membrane bioreactor,AGMBR)是一种将好氧颗粒污泥和膜生物反应器(membrane bioreactor,MBR)结合的新型水处理工艺,它既能结合二者的优势,如高质出水、同步脱氮除磷、占地面积小等,又能解决二者存在的问题,如MBR膜污染严重、脱氮除磷效率低和好氧颗粒污泥出水悬浮物浓度高等。本课题将AGM
经济的快速发展导致环境承载力迅速下降,水污染问题日益严重。其中有机废水的排放量大大增加,这不仅破坏了我们生活的环境,而且威胁着人类的健康。传统污水处理包括生物、物理、化学等技术往往需要消耗大量的能量且通常要结合几种处理方法才能达标排放。新型光催化技术操作过程简单、环境友好以及仅利用太阳光为能源,被广泛认可为是一种理想且具有前景的机废水处理技术。然而,要实现光催化技术的实践应用最大挑战是开发一种高效
学位
本研究针对当前我国工业园对于污染排放的管控方式只注重末端治理技术的不足,以长寿经济技术开发区天然气精细化工行业进行大气污染物“源头减排-中间控制-末端治理”全过程防控技术的研究。  通过调查摸清了长寿经开区整体的大气污染情况和天然气精细化工行业现状。调研了园区9家天然气精细化工企业,明晰了各个企业的生产情况、原辅料用量,梳理了天然气制甲醇、天然气制乙炔和天然气制氢氰酸等天然气精细化工行业典型生产工
学位
近年来,在经济全球化时代背景下,工业进程的加速和人口的迅猛增长,人类对化石燃料的需求量呈指数型增长。据最新公布的《能源展望(2020版)》报告显示,全球在2050年之前,对不可再生能源的需求仍呈继续增长趋势,而这些燃料在使用过程中会释放大量有毒物质。此外,随着监测技术的不断革新和环保意识的增强,人类对生存环境的要求也在不断提高,因此,迫切需要研究和开发绿色、节能、安全的处理措施解决当前及未来所面临
在中国快速城镇化背景下,城乡建设用地是土地利用变化中最活跃的类型,伴随经济社会高速发展,新农村建设和乡村振兴等战略推动以农村居民点为主的乡村建设用地发生着复杂的变化;三峡库区自投入运行以来,从水利调节、航道运输、能源发电等方面带来巨大效益,促进长江中上游地区经济社会快速发展,但三峡库区也面临着地质灾害、水环境污染、生态脆弱等生态环境问题,城乡建设用地转型与区域生态环境之间复杂的作用机制;深入剖析三
学位