基于SPI三相桥驱IC的采样与控制关键技术研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:liunanr0306
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
三相桥驱集成电路内部集成了三个独立的半桥栅极驱动电路,是智能功率集成电路领域中很重要的一类产品,主要用于电机的驱动。SPI通信是一种高速同步串行总线,协议简单,集成于三相桥驱集成电路可以灵活进行包括死区时间等配置的同时进行状态监测和实现中断,保障了所应用系统的可靠性。文中重点开展了集成SPI通信功能的三相桥驱集成电路的关键技术研究,主要工作如下:1、提出三相桥驱IC的整体框架。根据采样与控制的原理,针对电源电压不足的情况,确定了电荷泵电路用于增强低压操作;同时基于SPI接口的灵活性,一方面针对IC可能面临的故障状态确定了所需要的各类保护电路,用于监视IC的各个故障状态,另一方面各类保护电路面对故障状态时做出的保护响应进行可配置控制。并结合SPI和三相桥驱的工作原理,确定了IC整体框架。2、基于国内某0.18μm BCD工艺,开展了关键子电路的设计。包括电荷泵电路、带隙基准电路、LDO电路、栅极驱动电路、各类保护电路以及SPI寄存器等,其中带隙基准电压约为1.23 V,温漂系数16.52 ppm/℃;低压LDO输出5 V,带载能力12 m A,高压LDO输出15 V,带载能力60 m A;电荷泵输出约16 V,升压时间1.2~4.4 ms,时钟频率125 k Hz3、进行SPI三相桥驱IC的整体仿真。所设计的IC可工作在10~45 V电源电压下,栅极驱动拉灌电流约500 m A,输出电压最低为13.5 V,典型值为15 V,死区时间250 ns~8μs可调,调节精度为250 ns,过温保护阈值为150℃,迟滞为25℃,过流保护阈值可通过外围器件灵活配置,并可通过SPI使能退饱和检测与相位检测,达到预期要求。
其他文献
结合染色质的读体蛋白对组蛋白翻译后修饰的识别是表观遗传调控的一个主要机制。细胞核抗原Sp100(斑点状、分子量为100 kDa的蛋白)是早幼粒细胞性白血病核体(PML-NB)的组成型成分,在固有免疫及转录抑制中发挥重要作用。其剪接亚型Sp100C的羧基端具有独特的植物同型结构域锌指(PHD)和溴区结构域(Bromo)串联模块(Sp100CPB),且可以被干扰素刺激特异性的上调。运用结构生物学、定量
本文研究了低维量子多体系统的纠缠性质,分别探索了 0 + 1维玻色系统,1 + 1维自旋系统和2 + 1维自旋系统,并利用纠缠性质对不同维度下的一些物理系统做了深入研究.在0 + 1维玻色系统中,我们研究了对称态纠缠深度的稳定性问题.对称态的纠缠深度具有二分法,即N粒子纯态对称态的纠缠深度是1或者N.我们论证这种二分法在系统受非对称噪声扰动下也是稳定的.为了探测实验中制备的对称态的纠缠深度,我们提
在如今5G技术、雷达技术、高速信息交换技术飞速发展的现在,为了适应军事领域、工业领域和民用领域越来越高的速度要求,高速模数转换器(ADC)越来越重要。传统的超高速ADC结构——时间交织ADC(TI ADC)结构虽然能够达到极高的采样率,但是由于失配的影响,它的精度往往不高。虽然针对TI ADC的失配,研究者们提出了各种各样的校正方法,但是在实际应用过程中,TI ADC的校正依然很难达到理想的效果。
超奈奎斯特速率(FTN)传输技术能够在不增加传输带宽的条件下,通过减小符号发送间隔的方式提升传输容量和频谱效率,近年来成为了通信领域的研究热点。FTN系统射频前端本振相位噪声(简称相噪)会恶化系统误码性能,并与FTN引入的码间干扰(ISI)耦合,使得传统针对奈奎斯特传输无ISI情况下的相噪抑制方法不再适用。因而研究FTN系统中的相位噪声抑制对FTN的应用具有重要意义。本文针对FTN系统中相噪抑制问
目前5G通讯技术、智能终端、航空航天及物联网等方面对于高性能器件需求日益扩大,电子元器件作为支撑信息产业发展的基石,其性能的发展也逐步向着集成化、高频化、多功能化方向靠拢。而低温共烧陶瓷(LTCC)技术因其高集成度、高可靠性、设计灵活性及高兼容性等优势成为目前主流的无源器件集成技术。不过,该种技术对于使用的基板材料的要求也愈多。除了满足常规的微波介电性能优异性外,微波陶瓷还需能够在较低的温度下烧结
MRAM作为新型的非易失性存储器,不仅有着掉电不丢失数据的特性,在功耗、容量、寿命和读写速度等方面的性能也不逊色于主流存储器。越来越多的厂商开始生产制造MRAM磁存储器,由于集成电路的集成度不断提高,ASIC的设计复杂度越来越大,设计出现的错误的情况也越来越多,任何一个小错误都可能使得芯片报废,因此设计流程中,验证占了大部分的时间,验证成为了IC设计过程中至关重要的一步。在众多的验证方法中,基于U
目前,磁控管正逐步朝着高功率,高效率,高频段的方向发展,为进一步提升其性能指标,新的结构与新的技术不断涌现而出。与此同时,磁控管研究开始面临着愈来愈多的模式问题,模式关系愈发复杂,模式竞争愈发激烈。磁控管的模式问题是磁控管发展的一大阻碍,磁控管的模式研究具有重要意义,但由于磁控管理论的不完善,以及仿真和实验研究方法的局限性,使得研究过程中出现的模式问题难以被处理和分析,为弥补现有研究方法的缺陷,更
近代以来,随着我国航空事业的不断发展,航天技术日益成熟。当电子设备工作在宇宙空间区域时,就有可能发生辐射效应而导致飞行器功能异常,进而造成巨大损失。在航天应用的存储器和处理器电路中,灵敏放大器型触发器具有差分输入可靠性高和建立时间短等优点,获得了广泛的应用。高可靠抗辐射加固的灵敏放大器型触发器结构具有较大的工程应用价值。本文首先研究了现有抗辐射加固的灵敏放大器型触发器结构,分析了其单粒子效应理论基
随着雷达、通信、测量仪器等领域的不断发展,系统对模数转换器(ADC)的精度和速度的要求也持续提高。高速高精度ADC作为相关领域的关键部件,也是近年来研究的热点。时间交织ADC作为实现高速高精度ADC的主流结构,在与压缩感知相结合后可以进一步提高转换速率。但与压缩感知相结合的时间交织ADC同样受到失配误差的限制,导致其性能大幅度下降。论文结合压缩感知理论,开展了时间交织ADC失配误差校正技术的相关研
现场可编程门阵列(Filed Programmable Gate Array,FPGA),是一种可编程的数字集成电路(Integrated Circuits,IC)。FPGA从诞生到现在已蓬勃发展了30余年,被广泛应用于消费电子、汽车电子、航空航天、武器设备等传统领域,如今在数据中心、量化交易、芯片验证、机器学习等应用场景也开始崭露头角。目前FPGA主要有3种技术路线,即反熔丝技术、SRAM(St