上承式钢管混凝土桁式拱桥K型节点疲劳寿命研究

来源 :昆明理工大学 | 被引量 : 0次 | 上传用户:astanaZH
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
钢管混凝土拱桥在我国的基础建设应用中越来越广泛,其中上承式钢管混凝土桁式拱桥的拱肋是由钢管直接焊接形成,如此一来,其节点的疲劳问题就较为突出,钢管混凝土拱桥管节点的疲劳寿命就必须引起重视。对于空管和空管连接接头,在海洋工程中已进行了大量有效的试验和理论研究,然而对于钢管混凝土连接接头的疲劳研究国内外均甚少。本文结合一座上承式钢管混凝土桁式拱桥,对K型钢管混凝土和空管接头的应力集中系数进行了数值分析,并预测了拱桥在汽车荷载作用和地震作用下的疲劳寿命以及疲劳损伤。首先,介绍了公路桥梁结构疲劳寿命研究的基本理论;大概的阐述了国内外公路桥梁结构疲劳的目前研究现状。由此,肯定了圆管节点疲劳研究的两种方法:S-N曲线法及断裂力学法。利用S-N曲线法研究钢管混凝土节点的裂纹萌生寿命,断裂力学用于分析钢管混凝土节点疲劳裂纹的扩展寿命。其次,基于大型有限元软件建立上承式钢管混凝土桁式拱桥全桥有限元模型,文中计算分析了全桥静力模型的受力状态,选取了拱肋上不同位置最不利受力的三个K型钢管混凝土节点。然后利用局部分析软件FEA建立选取的K型空管-钢管混凝土节点三维实体模型,其施加荷载和边界条件均符合实际工程工况,分别计算出了三个K型钢管混凝土节点在轴向荷载、平面内弯矩作用下的热点应力集中系数大小。接着,在上承式钢管混凝土桁式拱桥三维有限元模型及其在疲劳车辆荷载作用下的动力响应的基础上进一步进行选取疲劳节点位置的局部热点应力分析。根据计算所得的热点应力集中系数,结合S-N曲线热点应力法和断裂力学分别计算节点的疲劳裂纹形成寿命和裂纹扩展寿命,将其两者结合即为节点的疲劳寿命。最后,重点分析了在不同程度下的汽车超载,不同地震加速度峰值对钢管混凝土节点疲劳寿命的影响。提出将地震作用产生的损伤等效换算为疲劳车通行量的方式,评估地震对钢管混凝土拱桥的影响。以协助人们在桥梁运营期间震后对钢管混凝土拱肋这一关键结构疲劳强度的估计,为管理和维护提供参考价值。通过对上承式钢管混凝土桁式拱桥K型节点疲劳寿命分析,为以后此类桥梁疲劳寿命预测研究提供了一定的借鉴方案。
其他文献
随着当今社会和经济的高速发展,人们对于能源的需求也越来越大,但是对化石能源的过度开采不仅会导致资源匮乏同时对于环境也会有一定的破坏,所以减少化石燃料的使用和探索开发可持续再生能源对于社会的发展具有重大的意义。氢质子交换膜燃料电池(PEMFC)以其高功率密度,快速启动、较低的工作温度和环境友好等优点而受到广泛关注。然而,其阴极氧还原反应(ORR)是一个缓慢的动力学过程,需要催化剂来加速这一反应。到目
超级电容器是一种新型的储能器件,具有充放电速度快、功率密度高、循环寿命长、工作温限宽等众多优点,它在新能源汽车、太阳能系统、可穿戴器件等领域被广泛研究与应用。对于超级电容器来说,电极是影响其电化学储能性能的关键元件,因此获取拥有优良电化学储能性能的电极材料是相关科研人员的主要方向。α-Co(OH)2作为一种非本征赝电容材料,拥有较高的理论比电容、良好的导电性、类滑石层状结构以及丰富的自然资源,被人
随着社会和科学技术的不断发展,人们对生活和居住环境的要求越来越高,导致了建筑能耗迅速增长。同时建筑能耗的不断提高,对传统能源的使用和全球气候变暖等问题提出了严峻的考验。其中家庭及工业供暖占据了建筑能耗的较大比重。为解决家庭供暖供热需求,太阳能等新能源以其良好的环境友好性一直受到人们的关注和青睐。太阳能因其总量大、分布广、易获取及无污染等优点已经被人们广泛地开发和利用。将太阳能利用技术与现代建筑相结
锂离子电池(LIBs)因其环保、高输出电压、大容量、长循环寿命和无记忆效应等特点,是各种便携式设备的优秀电源。最近,过渡金属氧化物如Ti O2、Mn O2和V2O5等具有微观和纳米结构的材料已被研究为锂离子电池电极的潜在候选材料。在这些材料中,V2O5具有典型的二维层状晶体结构,提高了锂离子的存储能力,理论比容量高达420m Ah/g。但V2O5也存在比表面积小、电导率低、充电过程中易发生相变、结
隔震技术是重要的防灾减灾手段之一,由于其简单实用、概念明确、效果明显等特点,深受国家重视。但由于隔震支座抗拉性能很低,在高烈度地区的高宽比较大的高层建筑上,隔震支座很难满足抗震规范要求,隔震技术在高层建筑上推广的进程受到了很大的阻碍。通过改进橡胶配方的方法可以提高隔震支座的抗拉性能。本文研究了一种小试样与原型隔震支座抗拉性能的关系,通过测量不同胶料制成的小试样就可以反映隔震支座抗拉性能,可以减少抗
随着微电子器件的迅速发展,电子器件的集成度不断提高,因此,科研人员逐渐将目光转向了具有半导体性质的二维纳米材料。在这之中,MoS2与NiO因其具有良好的结构稳定性与优异的性能,受到科研人员的广泛关注。MoS2是一种典型的过渡金属硫族化合物,且随着层数的变化其带隙呈现出可调控性,薄膜的层数不同其荧光特性也不同。NiO是一种拥有典型3d电子能带结构、优异的电学性能与光学性能的宽禁带P型半导体材料,广泛
废水中的抗生素污染物对生态系统和人类健康造成了严重危害,如何高效去除成为目前的一个研究热点。金属-有机气凝胶(Metal-Organic Aerogels,MOAs)作为一种新型的多孔材料,因具有密度低、比表面积高和孔隙大的优点而在吸附有机污染物方面表现出独特的优势。本论文以生物可再生的2,5-呋喃二羧酸(2,5-furandicarboxylic acid,FDCA)为有机配体与Fe(NO3)3
越来越多的研究表明:干旱有利于泥石流等地质灾害的发育,这给我们如今的泥石流监测预警、西南干旱河谷区人民生命财产安全等方面带来了严峻的挑战。然而,要想防治这类泥石流灾害,首先需要认清干旱河谷区松散土体起动泥石流的特征与力学机制,而对这类泥石流起动的研究,国内外相关成果较少。所以本文从试验出发,试图揭示干旱河谷区松散土体坍滑起动泥石流的力学机制与形成规律,通过数值模拟,研究干旱条件下边坡的安全系数变化
锡是重要的战略金属,我国是世界锡生产和消费第一大国。锡精矿经还原熔炼产出粗锡,粗锡精炼得到精锡。硫渣是锡精炼加硫除铜过程产生的一种危险废弃物,其主要元素为锡、铜和硫,主要物质组成为单质锡、硫化亚锡、硫化亚铜等,具有较高的经济价值。目前,硫渣现有处理工艺主要为火法和湿法联合,但存在操作流程长,工艺投资大等问题。因此,亟待开发一种清洁环保的硫渣处理新技术,实现清洁高效回收硫渣中锡与铜,以促进锡冶炼行业
环境雌激素是干扰体内分泌的一类环境激素,在已确定的环境雌激素中,有很大一部分是含有苯环结构的剧毒性物质,如多氯联苯类化合物(Polychlorinated Biphenyls简称PCB)、拟除虫菊酯(Pyrethroids)等。该类化合物具有毒性、不易降解、容易经各种途径进行迁移转化,严重影响着人类的身体健康。在众多的现代样品前处理方法中,磁性固相萃取方法是一种现代高效的样品前处理方法,具有操作流