非理想条件下超强激光辐射压力加速质子的研究

来源 :西北师范大学 | 被引量 : 0次 | 上传用户:cool_king_wq
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,激光与等离子体相互作用的离子加速因其具有高的加速梯度及小型化等优点,引起了人们的广泛关注.激光与等离子体相互作用产生的高品质离子束在许多领域都有着十分重要的应用,如癌症治疗、惯性约束聚变、实验室天体物理学等.目前,主要的离子加速机制有靶后鞘层加速、静电激波加速、辐射压力加速等.其中,辐射压力加速因其能量转换率高,能产生高品质的离子束等优点,而被认为是有前途的离子加速机制之一.目前,在辐射压力加速的理论及数值模拟研究中,为了得到高品质的离子束,常采用理想的超强激光与超薄靶相互作用来加速离子,但这给实验操作带来了极大的挑战性.本学位论文立足目前实验室实际激光薄膜靶参数及非理想条件,提出了两种在实验中更容易实现的辐射压力加速新方案,一种是利用双束超高斯激光与固体薄膜靶相互作用辐射压力加速质子,另一种是利用单束高斯激光与近临界密度复合靶相互作用辐射压力加速质子,并用PIC模拟对两种新方案进行了验证,均得到了高品质的质子束.具体如下:1.对于辐射压力加速来说,超宽超强的激光有助于产生高品质的离子束.但是由于激光能量的有限性,在实验中产生这样的激光具有一定的困难.因此在本学位论文中提出了利用两束激光得到一束超宽超强激光的两种方案.在方案1中,为了克服超宽激光强度的有限性,利用辅助激光与主激光在强度上进行叠加.在方案2中,为了克服超强激光脉宽的有限性,利用辅助激光与主激光在脉宽上叠加形成一束超宽超强的激光.通过二维PIC模拟发现,这两种方案中的质子可以在激光光压作用下长期稳定的加速.与单激光脉冲相比,质子的数目和能量都显著增加了.此外,还研究了辅助激光的参数,如强度、焦斑半径和脉宽对质子加速的影响.结果表明当辅助激光参数在一定范围内改变时,方案具有很好的鲁棒性.利用现有的实验室激光等离子体参数,该方案可获得1.2Ge V的单能高品质质子束.2.在辐射压力加速中,常使用理想条件下的超高斯激光与超薄薄膜靶相互作用.但薄膜靶的厚度只有几十到几百个纳米,如此薄的靶不仅自支撑性能较差,也给实验操作带来了较大的难度.实验室中的激光通常是高斯激光,但高斯激光会导致靶弯曲和质子发散,为了获得高品质的离子束,在理论与数值模拟中常使用超高斯激光.为了增加靶的厚度,提升靶的自支撑性,提出选择使用近临界密度靶.但在超强激光的辐照下,近临界密度靶会由于相对论自透明,而无法实现辐射压力加速的过程.因此提出在近临界密度靶前附加一层高密层来组合成复合靶.为了解决高斯激光导致的质子发散问题,提出利用外加纵向磁场对质子进行约束.因此,本学位论文研究了外加磁场约束下高斯激光与近临界密度复合靶的辐射压力加速质子.通过二维PIC模拟发现质子的发散程度减小,准直性有所提升.
其他文献
灌区作物种植信息和不同作物下的土壤水分状况是灌区进行合理灌溉和用水调度的基础,遥感技术为全面、快捷的获取上述信息提供了可能性。本文以Landsat 8卫星为数据源,以山西省临猗县回龙灌区为典型研究区,开展了灌区作物种植遥感监测与土壤水分反演方法研究,主要研究内容和结论如下:(1)利用2018年7月-2020年7月云量少于15%的Landsat 8影像构建归一化植被指数(Normalized Veg
目前,超冷原子物理是物理学备受关注的一个热门研究领域,尤其利用激光与中性原子的相互作用产生了人工规范场,实现了玻色-爱因斯坦凝聚体中的人工自旋轨道耦合,发现了许多有趣的基态相和动力学现象:如平面波相、条纹相、原子的自旋霍尔效应和自旋动量锁定等。而将自旋轨道耦合玻色-爱因斯坦凝聚体加载到光晶格中又出现了新的基态相,即边缘相。光晶格中自旋轨道耦合玻色-爱因斯坦凝聚体为利用中性原子模拟强关联系统的研究提
坡耕地约占我国耕地面积的1/3,对保障我国粮食生产具有重要意义。受地形坡度影响,传统的地面灌溉技术在坡耕地难以应用,喷灌因具有省水、增产、地形适应性强等优点,广泛应用于坡地灌溉中。然而,坡地喷灌相较平地更易形成地表径流,且水量分布在地表更不均匀,导致水分利用率较低、灌溉质量较差。为此,本文通过试验与数值模拟相结合的方法,建立了坡地喷灌土壤水分运动数学模型,揭示了坡地喷灌土壤水分入渗特性;依据水文学
熵最早由Clausius以孤立体系热力学熵增加定律的形式描述了热力学自发过程进行的方向。随后由Boltzmann把体系的宏观性质和微观状态联系起来提出Boltzmann熵,再由Shannon将熵的概念引入到信息论中,从量的方面阐述了信息的传输,提出了信息量的概念。信息熵作为随机事件不确定性的量度奠定了现代信息科学的基础。后来随着信息熵概念的不断发展,Shannon熵得以被很多学科所运用。本文从多组
近年来,生物炭作为土壤改良剂广泛应用于农田土壤质量改良和污染修复。施入生物炭可以一定程度上改善土壤磷的有效性,但是碱性土壤中较高的p H值和钙、镁等阳离子的存在,会限制生物炭对于磷有效性的调控作用。因此,必须考虑对普通生物炭进行功能改性,以期满足其在碱性土壤中的适用性。本研究选择宁夏石灰性风沙土为供试土壤,以提高磷肥的利用率为目标,选取生物炭(BC)、纳米羟基磷灰石(HAP)和腐殖酸钠(HANa)
随着城市化进程的不断推进,城市幼儿甚至是乡镇幼儿都很难接触到种植活动。种植作物是一个需要辛苦劳作、精心培育的过程,其中的动手操作、观察发现、管理记录都是幼儿获得科学探究能力和精神的有力途径。为了给幼儿创造一个自然种植的环境,教师利用幼儿园空地开辟了种植园地,将种植活动深入到幼儿生活中去,找到适合园本、适合幼儿的种植模式。幼儿全程参与种植园地的开发、植物的选择,并通过亲自动手种植,观察记录植物
期刊
由于超冷原子凝聚体系中的各种参数可人为操控,人们对该体系中的宏观非线性集体现象进行了大量数值模拟。并且超冷原子凝聚体系也为研究其他物理领域中的奇特现象搭建了量子模拟平台,比如中子星模拟等等。本文采用数值模拟的方法,在不同相互作用参数下,对单组份、双组份费米量子体系中奇特宏观非线性集体现象——孤子的动力学特性进行了研究。1.单组份费米对凝聚体中孤子的动力学特性。我们研究了一维简谐势阱里费米对凝聚体中
在群落组装过程中,物种到达一个生态群落的顺序和时间会影响物种间的相互作用,从而影响生态群落的结构和功能,即优先效应,其机制是早到达的物种能够抢占或改变现有的生态位,从而影响晚到达物种的成功定殖。目前,大多数文章主要探究两个或多个已知物种的优先效应和规律,很少在微生物群落水平上研究优先效应。本研究以两种土壤微生物群落A和B为研究对象,将其按照不同顺序接种到无菌土壤中,孵育形成融合菌群,再利用16S
D介子衰变的研究对于标准模型和Cabibbo-Kobayashi-Maskawa(CKM)矩阵都是非常有意义的,在研究过程中,强子矩阵元可以参数化为形状因子从而被精确地计算计算出来。目前计算形状因子的方法有很多种,比如:QCD求和规则,光锥求和规则,格点QCD,重夸克有效理论,低能有效理论等,这些方法的转移动量q~2是不相同的。这些形状因子可以用来提取CKM矩阵元,还可计算衰变宽度,进而可以与实验
磷(P)作为一种不可再生的土壤养分对植物生长和作物产量都十分重要。而且,农业生态系统的初级生产力在很大程度上取决于土壤中磷的有效性。因此,磷的测定对了解农田土壤中磷的迁移性和有效性是十分必要的,而且还可以评估磷施入土壤后的去向及其与植物营养、磷形态和吸收的关系。由于自然界中的磷存在潜在的动态循环过程,该过程有助于我们理解磷的累积和富营养化对农业和水体环境的威胁。因此,了解不同施肥方式下土壤团聚体中