铁掺杂钛酸钴催化活化过一硫酸盐降解有机污染物的研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:xiaohuang1234
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
非均相催化活化过一硫酸盐(PMS)产生的强氧化性硫酸根自由基(SO4·-),能够有效降解有机污染物。其中,钴基催化剂的研究较为广泛,但仍然存在一些尚待解决的问题:(1)催化剂中的Co容易浸出到水体中,造成环境污染;(2)催化剂中Co(II)/Co(III)氧化还原对的循环速率限制了催化剂的活性;(3)粉体非均相催化剂难于分离回收,残留在水体中的催化剂容易造成二次污染。针对以上问题,本论文选用晶体结构稳定的钛铁矿型CoTiO3作为活化PMS的催化剂。通过控制铁源和钴源投料比,采用沉淀法制备了Fe掺杂的CoTiO3催化剂。研究发现Fe取代部分的Co后,催化剂的电子结构与表面化学性质得到了有效调控并加速了Co(II)/Co(III)氧化还原对的转化,其催化活化PMS降解TC的速率常数较未掺杂样品提升了5倍。通过自由基猝灭实验和电子顺磁共振波谱测试发现,催化剂在活化PMS过程中会产生SO4·-、·OH和~1O2,其中SO4·-和~1O2在有机物降解中起主要作用。针对粉体催化剂难以回收利用的问题,采用原位生长法将Fe掺杂的CoTiO3催化剂均匀生长在Si O2纤维膜上,构建了具有开放催化网络的FCTSM催化分离膜。在PMS存在下,有机污染物(如,尼美舒利,亚甲基蓝等)通过液体静压驱动渗透过膜后,可有效降解为毒性更小中间体。同时,该催化膜还兼具良好的膜分离特性,对乳化油能实现98.4%的截留率。总的来说,Fe掺杂CoTiO3催化剂可高效活化PMS降解有机物,其在赋予滤膜催化氧化性能以及提高滤膜的水处理能力方面具有良好的应用前景。
其他文献
过硫酸钾具有强氧化性,其价格低廉,氧化产物对环境危害小,因此被广泛用作工业氧化剂和聚合引发剂。因小粒度过硫酸钾晶体具有比表面积大、溶解速率快、在有机溶剂中悬浮性能好等优点,小粒度过硫酸钾产品的用途及市场需求量逐年增加。目前,过硫酸钾生产过程中存在粒径较大、粒径分布不均匀等问题,难以满足市场需要。因此,本文在研究过硫酸钾结晶热力学与动力学特性的基础上,对过硫酸钾结晶过程中产品的粒度调控问题进行了系统
学位
本文围绕3D打印多孔金属材料的制备和应用展开研究,开发了基于直接墨水书写和粉末烧结工艺的多孔金属材料3D打印方法。分别制备了3D打印多孔镍电极和3D打印多孔铜催化剂,并验证了它们在储能和催化领域的应用价值。主要研究内容如下:(1)基于粉末烧结的3D打印多孔镍的制备及储能应用基于直接墨水书写工艺,以镍粉和甲基纤维素为原料开发了一种金属材料的3D打印方法。通过该方法配制的浆料具有剪切稀化特性,适用于3
学位
精喹禾灵作为一种安全性好,杂草选择性高的高效除草剂,在农业等领域具有广阔的应用前景。目前,工业上主要采用在乙醇-水溶液中冷却结晶的方式对精喹禾灵进行纯化,但单次重结晶后纯度仅能达到95.0%。主要原因一是目前使用的溶剂选择性不够,二是晶体粒度小,形貌差导致后续分离过程困难,从而影响产品纯度。寻求合适的溶剂体系并开发一种能调控精喹禾灵晶体形貌的工艺是工业中亟待解决的问题。针对上述问题,本文从精喹禾灵
学位
腐殖酸——含诸多活性基团的天然有机质混合物,具有各种功能如吸附,络合和离子交换等,与环境中各物质相互作用进而影响生态环境。显然这些活性性质都与其结构密切相关。利用溶剂浸取对腐殖酸进行初步分级,高效液相色谱法实现二次分离,了解其分子结构组成将有助于扩宽并加深其应用。另外,腐殖酸的高含碳量使其可作为制备碳点的含碳前体。本文以污泥堆肥中提取出的腐殖酸为研究对象,开展组分分离和应用研究,主要工作如下:1.
学位
Co3O4作为一种经典的电极材料在超级电容器领域受到了广泛的关注,但导电率低和分散性较差的特点使其在能量密度的提升方面受到了限制。论文通过改变结构和优化制备方法制得Co3O4基电极材料Co3O4@Ni-Co LDH/NF,并应用于超级电容器。(1)利用水热法制备得到了纳米线和纳米片交错的网状结构复合电极材料Co3O4@Ni-Co LDH/NF。通过改变表面活性剂CTAB浓度调控Co3O4@Ni-C
学位
ZnCo2O4因具有高理论比电容和丰富的氧化还原活性位点而在电极材料的制备中备受关注,但其固有的低电导率和低离子扩散速率限制了材料能量密度的提升。为改进其性能,本文将锌钴双金属氧化物与过渡金属硫化物复合制备了核壳结构复合材料,并对沉积时间和电解液组成进行优化,将制得的材料用于超级电容器中以检验实际应用能力。利用水热法和循环伏安电沉积法在泡沫镍上制备了复合材料ZnCo2O4@Co Mn-S,主要研究
学位
可再生能源储存与转化技术的开发和推广是助力全球能源转型的关键。其中,电解水析氢和电化学氧还原是可再生能源储存与转化中的重要反应。因此,开发出催化活性高、稳定性好、储量丰富、价格低廉的非贵金属基催化剂是电化学能源转化中的关键。氮掺杂碳具有优异的电学特性和电化学性能,将其与过渡金属复合形成的双活性中心协同效应使其有望成为高活性、高稳定性的非贵金属基催化剂。本论文围绕氮掺杂碳负载过渡金属复合材料的制备及
学位
本论文从MOFs材料固定化酶的优势及广泛应用出发,针对游离漆酶易受外界环境影响及重复利用性差等问题,以多级孔MOF材料HcP-UiO-66-NH2(30)为固定化载体,成功制备了酶学性能优于游离漆酶的固定化漆酶Lac@HcP-UiO-66-NH2(30);同时将其应用于抗生素污染治理领域,实现盐酸林可霉素和利福平的完全降解,固定化漆酶良好的循环利用性也为漆酶在环境修复领域的实际应用提供参考。具体研
学位
本文通过采用流体体积法(Volume of Fluid,VOF)和离散元模型(Discrete Element Method,DEM)的耦合方法,湍流模型选用雷诺应力模型(RSM),对水力旋流器中的气液固三相流进行了数值模拟研究。VOF用来计算流体相含率,DEM则用来追踪离散的固体颗粒的运动状态。通过网格无关性验证选取了2+1mm的网格尺寸组合,通过局部加密溢流出口和底流出口段的网格使得数值模拟的
学位
近年来,随着人类对石油能源的需求增加以及轻质油储量的不断减少,稠油的开采迫在眉睫。然而,由于稠油中含有大量的沥青质、胶质,以及一些脂肪烃类,稠油表现出高黏度和低流动性的特征。所以,在稠油的开采过程中选用合适的降黏剂来降低稠油黏度尤为重要。随着计算机运算能力的提高和分子模拟技术的发展,分子模拟是一种在分子层面对降黏剂的结构进行设计的有效手段。从分子层面揭示降黏剂的作用机理也减少了实验的经济成本和时间
学位