共轭延伸吩嗪基正极材料的合成及其有机电池应用

来源 :苏州大学 | 被引量 : 0次 | 上传用户:wkellyai_0
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来电子消费品、电动汽车等行业发展迅速,对锂离子电池的性能需求不断提高。作为电池的关键组成部分,正极材料的研究对于锂离子电池的发展至关重要。目前广泛应用的正极材料多基于无机过渡金属氧化物和磷酸盐如LiCoO2、LiMn2O4和LiFePO4等,但是也不乏各种缺陷。相对而言,有机正极材料具有理论比容量高、来源广泛、无毒可降解、成本低且结构可设计性强等独特优势,在大规模储能应用领域显示出极大的发展潜力。而设计合适的分子结构解决活性材料电化学过程中中间体稳定性较差和活性材料溶解导致“穿梭效应”等问题成为有机电池活性材料领域的关键科学问题。因此,本论文中我们的研究主要围绕吩嗪基电极材料体系与稳定性、电压和比容量等性能的构效关系和材料分子结构设计优化两方面展开。具体内容如下:(1)基于共轭延伸体系电荷离域稀释电子云密度提高材料放电电压、稳定反应中间体的策略,设计并合成了 π 延伸多活性中心的单体1,3,5-tris(10-(4-vinylphenyl)phenazin-5(10H)-yl)benzene(TPZB)及相应聚合物 p-TPZB。共轭效应促进多个活性中心之间相互作用,使材料在3.1~3.4 V和3.8~4.2 V vs.Li+/Li处表现出连续且均匀的氧化还原平台。利用较柔性的烷基为桥联基团聚合形成具有扭曲构型的聚合物链,削弱聚合物链之间的π-π堆积,降低离子在分子之间扩散迁移的晶格位阻,有利于载流子穿梭并提高离子电导率,电池表现出优异的倍率性能,功率密度高达4320 Wkg-1。共轭延伸的多活性中心体系有利于离子态的电荷离域,基于p-TPZB|Li的电池器件在2 C的电流密度下表现出155 mAh g-1的初始放电容量和优异的循环稳定性,充放电循环2000圈后容量保持率高达89%(平均每圈衰减率0.0055%)。在此基础上,进一步利用吩嗪的多电子氧化还原特性优化分子结构设计得到的p-TMPZB,最大化地提高吩嗪基材料的理论比容量,电池材料能量密度明显提高。因此,利用多电子共轭延伸体系可有效提高有机电极材料的稳定性和理论容量,筛选优化聚合方式可提高其倍率性能。(2)将具有电化学活性的正极吩嗪基团与负极羧酸盐基团通过共轭方式结合为双极性分子活性材料,正负极活性基团的共轭效应可以提高双极性材料的稳定性,且该类型有机盐几乎不溶于普通的非质子电解质,在电极材料领域前景广阔。本论文中通过吩嗪三聚体TPZB与羧酸锂盐-COOLi共轭连接设计了双极性小分子PZTB-Li6。该盐在电解液中几乎不溶,有利于提高电池的循环稳定性。利用吩嗪与羧酸盐之间的电势差,PZTB-Li6在对称电池可以表现出较高的输出电压,进而提高电池的能量密度。这一策略为有机对称电池电极活性材料的设计提供了思路。
其他文献
免疫检查点阻断疗法是近年来兴起的癌症治疗领域的明星手段,但临床响应率低和严重的免疫相关不良反应限制了其进一步发展。与传统的化疗相关毒性相比,免疫治疗相关不良反应的发作较迟但病程很长。其中,肝脏是最频繁发生免疫相关不良反应的器官之一,主要症状表现为肝炎。目前临床上治疗免疫相关不良反应的手段主要是暂停免疫检查点阻断剂的使用和应用免疫抑制剂。但是,停用免疫检查点阻断剂会影响癌症患者的抗癌疗效,全身性应用
学位
近年来,全聚合物太阳能电池由于其优异的稳定性得到科研人员的广泛关注。然而,基于全聚合物的光伏器件转换效率还存在一定的差距,需要进一步进行研究。本论文以全聚合物有机太阳能电池的器件制备为基础,主要研究了全聚合物太阳能电池的传输机理、器件表现与薄膜形貌之间的联系,聚合物材料结构对形貌以及性能的影响,主要研究内容如下:首先,我们系统深入研究了基于PCBM,非富勒烯小分子和共轭聚合物受体的有机太阳能电池的
学位
在大数据时代,神经形态计算体系得到了飞速发展,内容涉及多个学科和各种交叉领域,其在自动驾驶技术、图像识别处理、医疗诊断等各个方面都取得了广泛应用。但是,目前大部分的进展与成果还是基于传统计算机通过软件算法的设计而实现的。基于冯·诺依曼架构的传统计算机由于运算单元与存储单元相互分离的特点,在信息处理时,数据需要不停地在两个单元间进行传输,这不仅极大地限制了数据处理效率而且带来了巨大的额外能量消耗。因
学位
得益于其高能量密度和长循环稳定性,锂离子电池被广泛应用于便携电子设备及电动汽车领域,在全球储能市场中占据了重要一席。然而,伴随着可再生能源的推广,能源存储需求进一步扩大。在规模化应用面前,锂离子电池开始暴露制作成本高昂及能量密度受限的短板,发展更具安全性和经济效益的新型高性能储能装置逐渐凸显出重要性和紧迫性。其中,从降低电池成本的角度出发,可以选择与金属锂相比价格更为低廉的碱金属,例如金属钠、钾等
学位
金属卤化物钙钛矿是目前制备光电器件最有前景的材料之一,受到科研工作者的广泛关注。近年来,关于使用界面工程调控钙钛矿的研究层出不穷,钙钛矿太阳能电池和发光二极管器件的效率屡创新高。然而,关于钙钛矿各功能层界面载流子的传输、界面的电子结构、能级排列以及离子迁移等机理方面的问题却鲜少提及。因此,本文使用光电子能谱(XPS,UPS),掠射角X射线衍射(GIXRD)等技术,从界面分析的角度出发,在制备出高质
学位
以甲氨基铅卤化物(CH3NH3PbX3)为代表的有机-无机杂化钙钛矿材料由于具有直接带隙、高吸收系数、高载流子迁移率、长载流子寿命等优异的光电特性受到国内外学者的广泛关注。目前,钙钛矿光电二极管的探测率已突破1013 Jones,极具应用潜力。然而,已报道的钙钛矿光电二极管器件大多数尺寸较大(光敏面积集中在0.05~0.2 cm2),极大地限制了其在高像元密度成像阵列中的应用。此外,受限于钙钛矿材
学位
基因治疗作为一种新型的治疗方法,在治疗肿瘤等各种疾病方面都表现出广阔的应用前景。对于基因治疗,一个很重要的挑战就在于安全和高效的递送载体的构建。相比于病毒载体,非病毒载体在癌变、免疫原性、生产成本、安全性能等方面都有着显著的优势。但就递送效率而言,非病毒载体的效率相对较低。本文构建了两种不同类型的基因载体体系,不仅保障了高效的转染效率,同时也具备了较高的生物安全性。归功于纳米技术的快速发展,越来越
学位
当下显示领域正经历着日新月异的变革,以有机电致发光二极管(OLEDs)为代表的低能耗、优异视觉体验、可柔性化的新型显示技术正得以迅猛发展,已广泛地应用在可穿戴、车载、教育、医疗终端设施中,为人们提供了丰富的互动式场景体验。而当以更高色纯度、更广色域、且适于溶液法工艺策略的新型胶体量子点(CQDs)替换传统有机染料构建电致发光器件(QLEDs)时,除可显著提升屏幕的视觉感染力之外,也将进一步简化生产
学位
近年来,细胞膜仿生纳米颗粒获得了科研工作者们的广泛关注。利用细胞膜“伪装”人工合成纳米颗粒内核,使得该类仿生纳米颗粒具有源细胞固有的表面功能特性。在本篇论文中,我们构建了具有靶向性功能的细胞膜仿生纳米颗粒,并将其应用于眼部疾病的治疗。本论文的研究思路和内容分章节介绍如下:第一章:简要概述了细胞膜仿生纳米颗粒的定义和发展历程。详细介绍在疾病治疗领域,细胞膜仿生纳米颗粒的代表性研究进展。阐述了本篇论文
学位
得益于制备工艺简单且可以低温、低成本制备高质量的薄膜,钙钛矿太阳能电池自2009年问世以来,其光电转换效率从最初的3.8%增长至目前的25.2%。丰富的原材料储备以及广阔的应用前景使得整个钙钛矿领域充满活力。但同时,钙钛矿材料中所含的铅元素可能带来环境污染等问题。为解决铅毒性问题,本论文以无毒非铅锡基钙钛矿FA0.75MA0.25SnI2Br为主要研究对象,通过调控钙钛矿成膜、抑制二价锡离子(Sn
学位