激光线扫描三维测量系统标定技术研究

来源 :深圳大学 | 被引量 : 0次 | 上传用户:baimeimei
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在《中国制造2025》加快部署的时代背景下,随着高新产业精加工和工业物联网技术的发展,以及对非接触测量的要求不断提高,拥有高精确度、良好稳定性、强主动性、快速响应等优势的激光扫描测量成为了三维数字化测量研究领域的重要分支,在工业生产、文物考古、3D电商等不同的场景下有着日趋广泛的应用。而激光扫描测量系统的标定精度是影响三维测量精度的关键因素,因此研究高精度标定方法对激光三维测量研究领域具有重要意义。本文围绕激光线扫描三维测量系统标定涉及的相关方法展开研究,主要工作包括以下三个方面:(1)设计了自适应宽度的二次加权灰度重心算法提取激光条纹中心,并根据斜率阈值进一步对提取中心点进行均值优化。本文研究了激光条纹中心的识别与定位,采用自适应中值滤波、基于全局的自动分割及形态学运算对光条纹进行了预处理;利用二次加权灰度重心算法和均值优化操作获得了光条特征点的亚像素中心坐标。实验表明该方法能有效降低条纹提取中,由于现场环境干扰、图像噪声以及待测物体表面材料等因素带来的影响,提高提取精度,获得亚像素级激光条纹中心。(2)本文构建了单个相机+单线激光器的激光线扫描测头,对其数字模型构建及参数标定方法进行了研究。利用圆形标志点平面标靶对相机进行标定,获得了相机的内参及对应的变化矩阵。研究了几种光平面参数标定方法,并基于射影变换进行了高精度光平面标定,过程简单,避免了使用交比不变性的复杂运算,且可利用的光平面标定特征点的数目不受限制,实验结果表明该方法能提高光平面标定的精度和鲁棒性。(3)为得到物体表面轮廓信息,搭建了平移和旋转两种方式的扫描测量系统。研究了辅助运动装置的标定,以确定不同位置下所获数据与测量系统坐标系的变化关系。利用一个标准球消除平移扫描测量中由于安装误差造成的光条扫描方向偏移;利用平面标靶对转轴标定进行了研究,根据最小二乘法对测量数据的特征点进行空间圆拟合,并提出了相关优化方法提高圆心的拟合精度,最后对圆心作空间直线的拟合得到标定参数。实验验证了标定算法的有效性,实现了对物体的三维数据采集和测量。
其他文献
基于微多普勒雷达的人类活动识别可用于许多领域,例如睡眠监测,老人护理,人机交互和反恐监测等等。但是现有的分类算法从雷达数据的表示方式、特征提取和分类识别分析仍然存在许多不足。到目前为止,几乎所有的分类算法对基于雷达的动作进行识别都先对原始数据进行短时傅里叶变换(short-time Fourier transform,STFT),原始的雷达数据就表示为频谱图。然后用手工的方式或者用神经网络对频谱图
光声成像作为一种新型的生物医学成像技术在近几十年迅速发展,相比较纯光学与声学成像,光声成像技术在成像深度和对比度方面展现出更大的优势。但是,大多数光声显微系统采用压电超声换能器进行光声信号检测,受压电材料固有物理属性的限制,这类探测器的探测带宽有限,通常在几十兆赫兹左右,无法准确响应短脉冲光声信号。这导致了成像系统纵向分辨率较低(通常大于20μm),难以准确定位吸光物质的深度位置。而且,在光学分辨
随着科技的快速发展,5G时代万物互联人工智能的来临,物联网感知技术得到大力提倡,光纤传感技术愈发得到重视。自光纤光栅问世几十年来制备方法越来越多,对于光纤布拉格光栅而言其制备方法就有:双光束干涉法,相位掩模板法,飞秒激光逐点/逐线法等,应用光纤布拉格光栅作为敏感器件的传感器也越来越广泛。本文提出了在特种光纤上制备光纤布拉格光栅(Fiber Bragg Grating;FBG),并将其作为检测外界环
偏光片,作为薄膜晶体管液晶显示面板(TFT-LCD)最重要的组成部件之一,其性能对液晶面板的质量有重要的影响。而偏光片外观缺陷会降低整个液晶面板的显示质量,甚至造成整个面板的报废。因此,研究偏光片外观缺陷视觉检测技术具有重要的意义。针对难以检测的细微透明压痕缺陷,本文提出了一种基于机器视觉的偏光片外观缺陷饱和成像检测方法,主要研究内容如下:1.研究了一种饱和度指导的极细微压痕缺陷图像增强方法。条纹
近些年来,人工智能成为了我们日常生活的焦点。在人工智能时代,人脸识别技术被广泛用于我们的日常生活中,如智能手机的人脸解锁功能以及人脸支付功能等,因此人脸识别技术识别性能的提升成为相关研究人员的研究热点。为此,一些先进的人脸识别算法被相继提出并得到了广泛的运用,如非负矩阵分解算法(NMF)等。NMF算法的基本思想是用一组基图像的线性组合来表示原始图像,这种对原始图像进行分解的方法符合人类思维中“局部
非晶合金由于其特殊的原子排列结构,具有优异的理化综合性能。在机械、通讯、防护等多种领域存在诱人的潜在应用前景。激光熔覆(Laser Cladding,CL)作为一种新兴的表面改性技术,能够使原始粉末在高功率激光束中熔化至熔覆基体表面自激冷却,形成高致密度且与基体呈冶金结合的涂层。本文采用激光熔覆技术制备Fe55Cr25Mo16C2B2非晶合金涂层。影响非晶合金涂层形成的因素很多且相互作用。本文首先
卵母细胞非整倍体(aneuploidy)是人类染色体异常情况中最常见的类型,是指染色体的数量比二倍体多或者少一条或几条染色体。造成人类常染色体非整倍体这一异常类型的主要原因是卵母细胞在成熟过程中发生错误的减数分裂,这一异常也是导致女性不孕不育和胎儿先天畸形等相关疾病的主要内在因素。由于卵母细胞在生长发育过程中的复杂性和研究手段的限制,虽然人们已经对染色体减数分裂这一重要过程进行了大量的研究,但是其
随着科学技术水平的不断提高,3D打印技术发展迅速,特别是以LCD光固化技术为代表的新兴3D打印技术近年来迅速发展。由于LCD光固化技术的3D打印机与其他消费级的3D打印机相比,有着成型精度高、打印效率高且成本低等优点,3D打印行业内对于LCD光固化技术3D打印机的研究热度不断上升,同时LCD光固化技术的3D打印机产量日益增长。但是,目前行业内并没有专业的LCD光固化成型缺陷识别检测设备,生产线上依
随着农业技术的发展,市场上的水果品种越来越丰富,人们对水果质量的要求也越来越高,同时也希望借助某些检测技术来鉴别一些人眼所无法直观判断的水果外部品质。高光谱成像技术由于其波段范围宽,光谱分辨率高,不会对被测对象造成破坏等特点使之成为当下无损检测水果品质的一种重要手段。但由于目前水果的高光谱采集多是利用线扫描的方式,存在光谱采集装置笨重,采集光谱速度慢,容易受平台和物体快速移动的问题。这些因素使得高
涡旋光是一种特殊结构光场,具有相位或偏振奇点的扭曲光束,其相位为螺线形。这样的光束轮廓可以像开瓶器一样绕行进轴扭曲,并且其中心强度为零。根据涡旋光自身所携带的轨道角动量和涡旋相位,可以将其应用于很多领域:利用涡旋光的轨道角动量,能够传递给微粒,从而对微粒进行操作,比如俘获、平移微粒等;利用不同轨道角动量不会互相串扰,可将涡旋光用于光通信,提高光通信的系统容量;利用其角向相位旋转特性,在成像中可被应