高效过渡金属ORR催化剂的设计及制备技术研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:tiger_0003
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
高效氧还原催化剂的发展对于燃料电池技术的进步至关重要。本文依据DFT计算探究具有Fe-N4活性位点的单原子催化剂上拥有多个活性位点的可能,以及各个活性位点的ORR活性。利用电沉积法以及自主创新的旋转电沉积方法制备出具有纳米片颗粒镶嵌的多孔表面结构的高效氧还原催化剂—MnO2@Mn催化剂。对制备工艺进行研究的同时,运用XRD,SEM,TEM,XPS,Raman等测试手段对材料的物相组成和微观形貌做了表征。采用LSV,CV,Tafel,I-t,EIS等电化学测试手段样品的氧还原催化活性以及长时间放电稳定性进行了表征。(1)DFT计算表明,在Fe-N-C催化剂模型上中心Fe原子是氧还原反应的第一催化活性位点,催化反应的速度控制步骤为OH-从Fe-N-C催化剂上脱附。当中心Fe原子被中间产物占据时,C1位点可以作为Fe-N-C催化剂的第二催化活性位点,速度控制步骤为O2分子吸附在催化剂上得一个电子生成*OOH的步骤。(2)通过电化学沉积法,以500 mA cm-2电流密度沉积80 s制备出具有多孔结构的锰基氧还原催化剂。多孔结构是由一个个球形颗粒组成的,球型颗粒生长在一起形成了多孔结构的孔壁,颗粒直径大约是7μm,多孔结构的孔径为10μm到15μm。催化剂样品表现出与商业Pt/C催化剂相似的起峰电位与半波电位,同时长时间放电稳定性优于商业Pt/C催化剂。(3)通过自主创新的旋转电沉积法制备出一种具有微米片状颗粒镶嵌在多孔表面结构的高性能氧还原电催化剂—MnO2@Mn催化剂。MnO2@Mn催化剂样品中存在金属锰以及二氧化锰,非晶态二氧化锰均匀分布在多晶态和非晶态的锰金属中。最佳沉浸工艺为500 mA cm-2沉积电流密度下沉积80s,此工艺下制备出的MnO2@Mn催化剂样品表现出超越商业Pt/C催化剂的优异氧还原性能,在其界面上发生的氧还原反应是高效的四电子转移步骤,其电化学阻力以及长时间放电稳定性能均优于商业Pt/C催化剂。
其他文献
淀粉样β蛋白(amyloid-β,Aβ)在大脑内的聚集沉积是阿尔兹海默症(Alzheimer’s disease,AD)发病的主要原因。研究表明,氮掺杂碳聚合物点(Nitrogen-doped carbonized polymer dots,CPDs)既能抑制Aβ聚集,又能解聚Aβ纤维,还可以检测Aβ聚集体。因此,本论文提出以CPDs为设计基础开发新型高效的多功能Aβ聚集抑制剂,探索治疗AD药物开
学位
与传统的有机电解质相比,水系锌离子电池具有安全、成本低、处理方便和离子电导率高的优势。金属锌具有高的理论容量,低的氧化还原电位,高丰度和环境友好性。但是Zn2+电荷密度较高,半径较大,目前现有的正极材料在储锌过程中容易使锌在插入后难以脱出,稳定性较差。因此,研发新型的正极材料来提高锌离子的电池性能是必要的。本文通过合成了有机正极材料—2,5-二(对氨基苯胺基)-对苯醌,简称为BAA-BQ;通过聚合
学位
DNA是分子结构和功能精准可控的生物相容性高分子,因独特的序列编程性、刺激响应性和多功能性被广泛用于智能纳米药物载体的设计和开发。近年来通过向细胞内引入动态组装过程被认为是医学治疗的新范例。本论文制备了具有细胞内环境响应能力的动态DNA纳米组装材料,并探究了胞内组装过程对药物治疗过程的影响。论文的主要研究工作归纳如下:(1)构筑了酸响应的动态DNA纳米组装材料。利用热稳定的dsDNA引物通过PCR
学位
聚对苯二甲酸乙二醇酯(PET)是现代社会广泛应用的一类塑料材料。PET结构中的酯键作用使其化学性质十分稳定,不易自然降解,故PET废弃物在环境中的大量积累对人类健康和生态系统带来严重威胁。酶解是PET降解和循环利用的有效途径。近年发现的PET水解酶(PETase)可在常温下高效降解PET,但酶活性和热稳定性有待提高。本文提出利用化学修饰方法改善PETase的酶学性能,通过利用不同亲疏水性和荷电性质
学位
手性是自然界的基本属性之一,不同的对映体之间具有相同的物理和化学性质,但在生物体系中常常表现出不同的生理活性和药理作用,这使得手性分离和识别在生物和现代制药工业中非常重要。新型的基于晶体管的手性传感器可以实现在线实时快速检测降低响应时间,基于此,本论文合成衍生一种不溶于水的新型的阴离子环糊精,并构建了两种场效应晶体管手性传感器件,实现了多种手性对映体高灵敏的快速在线实时快速检测。以磺丁基醚-β-环
学位
有机阳离子液体(OCILs)是近年来发展起来的一种高效均相催化剂。然而,从反应体系中分离产物和回收OCILs催化剂的困难仍亟待解决,这也是困扰OCILs大规模应用的主要因素之一。“固定化”OCILs不仅可以保持OCILs的催化功能,同时非均相催化又使得OCILs便于分离和回收,但OCILs分子与载体之间的非共价弱相互作用会导致客体分子在反应过程中从多孔主体中脱离,从而使得催化剂的反应循环性能差,同
学位
随着人类社会的发展和进步,环境污染以及能源危机问题日益凸显,利用可再生能源成为应对的方法之一。纳米流体学作为探究纳米尺度下离子传输的学科,早先研究是聚焦于生物医学领域。如今,通过模拟生物体的各种复杂离子传输过程设计智能仿生的纳米流体系统不仅在生物医学领域,而且在能源转换等领域也显示出广泛的应用前景。仿生的离子通道由于具有快速传输、选择性、门控、泵等特点可用于收集各种外部能源转换为电能,这对于探索和
学位
超级电容器具有功率密度高、使用寿命长等优点,被广泛应用于消费电子产品、新型能源汽车、电力、国防以及交通运输等领域,但超级电容器能量密度不足的问题制约着其更大规模的应用。电极材料是影响器件性能的重要因素,因此开发具有高比容量的电极材料是提升超级电容器能量密度的有效手段。本文采用水热法制备了NiCo2O4/rGO和Bi2O3电极材料,分别用作非对称超级电容器的正负极。对正负极材料和组装得到的器件进行了
学位
超级电容器因为其功率密度高、循环寿命长等优点得到越来越多的使用,同时其安全性问题也得到了更多的关注。全固态电容器不使用液态电解质可以有效提高安全性,但是由于固体电解质离子转移速率较低,需要对电极材料进行选择和结构设计。本文选取三聚氰胺海绵为主体材料制备三维碳框架,并使用水热法和沉淀再溶解法制备钴酸镍和碳框架的复合材料,针对材料的结构、形貌、储能性能进行表征探究。研究中发现,三聚氰胺海绵在氮气氛围下
学位
针对传统癌症治疗手段中的各种弊端,诊疗一体化技术的提出为人类治疗癌症带来新的希望。花菁是一种具有诸多优良光学性质的近红外有机小分子染料,但是其较差的水溶性和低单线态氧产率影响了其广泛应用,同时具备诊断和治疗为一体的纳米粒子的研究也尚有欠缺。本文研究了重原子效应对花菁染料光动力和光热性能的影响,后通过在花菁IR8和甲氨蝶呤(MTX)中分别引入聚乙二醇(PEG)合成的两亲性衍生物作为壳材料,并通过自组
学位