【摘 要】
:
RNA测序(RNA-seq)极大地促进了对不同生物体的转录组全景图的探索。然而,由于当前的分析软件和测序技术的各种限制,转录组重建仍然具有挑战性。本论文构建了一个有效的工具QuaPra(Quadratic Programming combined with Apriori,结合Apriori算法的二次规划),用于转录组的精确组装和定量。与其他目前流行的软件相比,QuaPra的灵敏度和精密度比其他当
论文部分内容阅读
RNA测序(RNA-seq)极大地促进了对不同生物体的转录组全景图的探索。然而,由于当前的分析软件和测序技术的各种限制,转录组重建仍然具有挑战性。本论文构建了一个有效的工具QuaPra(Quadratic Programming combined with Apriori,结合Apriori算法的二次规划),用于转录组的精确组装和定量。与其他目前流行的软件相比,QuaPra的灵敏度和精密度比其他当前流行的工具至少高2.7%,并且可以检测到至少26.5%更多的低丰度(0.1~1 FPKM)的转录本。此外在真实测序数据中,QuaPra比其他同类型软件正确组装的已知转录本至少多1/4。大鼠是生物医学研究中重要的模式生物,但其尚有很多基因仍未被注释。本论文使用从SEQC项目团队生成的320个样品中11种不同器官的RNA-Seq数据,使用Stringtie和QuaPra这两个转录本拼接软件重构了大鼠转录组(Rat Transcriptome Re-annotation,RTR)。RTR媲美已注释的小鼠转录组。在RTR中注释有61,582个基因和130,308个转录本,分别占了基因组~44%和~10%的区域。在新发现的剪接位点中,有35%是半保守的,这是产生具有潜在生物学意义的新转录本的主要机制。在RTR所注释的130,308个转录本中,有37,203个新转录本被标注为高可信度的可编码转录本,34,718个新转录本被标注为高可信度的长非编码转录本。本论文对37,203个高可信度的可编码转录本中的36,564个进行了功能注释。新的转录本和转座元件之间的重叠度是远远超过已知的转录本和转座因子的重叠度。此外,我们还发现在所有11个组织中均有表达的10,356个管家基因和12,905个管家转录本,其中748个管家基因在不同组织中表达不同的转录本。RTR这一新的大鼠转录组为大鼠疾病和毒性模型的遗传学和基因表达研究提供了必要的参考。
其他文献
原癌基因BCL6作为抗凋亡家族成员之一,通过转录抑制功能参与调节体液免疫和B细胞淋巴瘤的形成。目前关于BCL6的研究主要集中在Tfh细胞和生发中心B细胞(GC B),其在固有免疫系统及自身免疫中功能的研究相对较少。在本研究中,我们首次发现巨噬细胞BCL6能够调控Th17细胞的分化及自身免疫疾病之一多发性硬化症的发生发展。研究过程中,通过对实验组LysM cre+/-BCL6f/f小鼠(巨噬细胞缺失
量子多体体系包含大量相互作用的粒子,蕴含着丰富的新奇量子效应,是凝聚态物理研究的核心内涵。由于系统的希尔伯特空间维度随体系尺寸呈指数增长,造成量子多体系统的描述与理论研究变得极其困难。目前,量子多体理论在研究多体系统时遇到的困难已经在一定程度上影响到凝聚态物理的发展,这在当今强关联系统的研究中表现尤其明显,为凝聚态物理学家理解高温超导、量子Hall效应等物理现象的本质造成很大的阻碍。传统的多体理论
我们在张量范畴中引进了余代数上的几何偏余模这个概念作为Caenepeel和Janssen提出的霍普夫代数上的作用以及偏作用的改进和补充。我们证明我们的概念能更好的描述代数几何中的偏作用。我们证明在要求不高的条件下,几何偏余模范畴是完备和余完备的,并且霍普夫代数上的偏余模范畴是次张量范畴。我们发展了几何偏余作用的霍普夫伽罗华理论,这表明我们的概念在霍普夫代数中也是一个有用的补充工具。
利他决策是社会决策的典型代表,其核心在于自我与他人利益的权衡。对利他决策的探讨不仅可以描述和解释个体的利他行为,还有助于寻找促进社会合作的心理机制,因此成为近年来研究者关注的热点之一。然而,现有研究较多从个体的角度探讨利他行为的产生机制及情感、认知因素的影响作用,而较少考虑任务环境的影响,尤其是缺乏对不同任务环境下利他决策偏好进行比较的研究。究其原因,主要是由于缺乏有效的理论工具来将复杂的利他决策
承载着纳米光学要求集成器件越来越微型化的期望,人工光学材料成为该领域的研究前沿。目前,人工光学材料主要包括光子晶体、特异材料、特异表面和特异晶格,它们展现出自然材料不具备的新颖光操控现象,极大地扩展了人们对材料的认知。深入探讨影响微粒子光散射行为的因素,在实现一些新奇光学现象和获得超薄亚波长光学结构方面具有独特的理论价值。这主要是由于,微粒子是构成人工光学材料的基本单元,它的光散射性质对人工光学材
在自然光合作用中,光捕获复合物能高效的捕获太阳光并传递激发态能量至反应中心,从分子层面上理解光合体系中激发能转移机制对于优化和设计人造光合系统以及光电器件等有重要的研究意义。众多研究已经表明动态蛋白环境在促进激发态能量转移中扮演着重要的角色,但是蛋白环境如何影响激发态能量转移仍需厘清,激发能量转移的分子机制也待阐明。参与光合作用的色素-蛋白质复合物结构非常复杂,通常由几十到几百个色素分子/辅因子和
生殖细胞是有性生物体内能产生配子、繁殖后代的细胞总称,是遗传物质传递的唯一载体。在哺乳动物体内,生殖细胞起源于顶胚层附近的原始生殖细胞,随后迁移至发育的性腺中成为生殖干细胞,历经有丝分裂增殖和减数分裂分化,进一步形成成熟的配子(精子或卵子)。小鼠精原干细胞停滞在细胞周期的G1/Go期,在出生后d7~d10左右恢复并进入减数分裂,到6-8周性成熟期,经历初级精母细胞、次级精母细胞及圆形精子,最终形成
植物衰老是植物生长发育的最终阶段,它最明显的外观标志是叶片由绿变黄直到脱落,而作为植物进行光合作用的主要器官,叶片衰老引起的有机物合成减少将极大地限制作物产量潜力的发挥。因此揭示植物自身调控衰老的分子机制将为高效改良植物性状和品质提供重要的理论依据。植物激素在植物生长发育过程中起重要的调控作用,已有研究表明,细胞分裂素(CKs)在叶片衰老过程中起抑制作用,而水杨酸(SA)对叶片衰老起促进作用。NA
铜是包括鱼在内所有动物的必需营养元素,铜以辅酶的形式在体内发挥生理作用,机体氧化还原反应、铁离子代谢、能量生成、胶原合成和脑神经递质生成等一系列生理生化过程都和铜有关。饲料铜是鱼类铜的主要来源,过量的铜会对鱼类造成氧化损伤和毒性作用。鱼体内铜含量的高低受到吸收和排出两个关键环节的影响,其中铜在鱼消化道内的吸收、利用过程过程尤为重要。影响鱼类饲料铜吸收的因素很多,铜的化学形式是其中最主要的一个因素。
伤口感染是造成糖尿病伤口难以愈合的主要病因之一,金黄色葡萄球菌(Staphylococcus aureus)是导致糖尿病患者伤口感染的主要致病菌,它能通过表达肠毒素、溶细胞毒素、核酸酶、蛋白酶等多种毒性因子来破坏宿主防御系统。白细胞介素33(IL-33)是近年来发现的一个IL-1家族新成员,宿主在金黄色葡萄球菌感染皮肤后会显著增加IL-33的表达,进而诱导NO的释放、上调抗菌肽REG3A的表达来增