基于应力-光学效应的金属薄膜的应力表征方法研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:flfi2003
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,纳米薄膜在许多现代工业领域获得了非常广泛的应用,如微机电系统(MEMS)和柔性电子领域等。纳米薄膜在复杂的微加工制备和随后的服役过程中的变形损伤,是影响元器件寿命的关键因素。因此对其力学性能和行为的研究是非常必要的。本文基于应力光学定律,发展了一种用于金属薄膜的应力表征新方法。主要工作内容如下:基于应力-光学定律,建立了一套用于分析膜基结构应力的马赫-曾德激光干涉系统,并基于此系统建立了单层膜结构的透射激光相位延迟与应力之间的定量关系。建立了基于条纹分析的相位分析方法,并编写了相应程序。在该实验系统中,测量了金属铜膜的应力光学系数Af和Bf,以及聚酰亚胺基底材料的As和Bs。这部分工作证明了金属应力光学效应的存在,为测量金属薄膜内部应力提供了实验基础。基于光弹性原理,提出了测量纳米级金属薄膜应力光学系数的新手段。分别测量了聚酰亚胺基底和金属铜膜的绝对应力光学系数C。以上述工作为基础,分析了带小孔膜基复合结构中薄膜、基底在孔边的应力分布情况,分析了膜基结构中薄膜边缘处的应力集中现象。并使用有限单元方法对上述结构进行有仿真分析。实验结果和有限元结果吻合良好,从而证明了论文中提出的膜基结构应力分析方法的可靠性。为了精确控制对膜基结构的加载,本文设计研发了一种用于微纳米尺度薄膜微型拉伸加载装置。该装置采用了新型夹持和传动方式,极大地减小了自身尺寸和重量。控制系统可精确控制拉伸试件的位移,实现了装置的数字化和自动化。整个装置可实现光学透射和反射方式观测,同时又能与共聚焦显微镜配合,实验设备满足纳米尺度薄膜材料的光学观察和测量要求,实验精度和设备可靠性良好。通过以上研究,本文研究金属薄膜的应力光学效应,并且提出了新颖的实验方法实现对膜基结构的薄膜、基底内部应力进行测量,为膜基结构力学分析提供了一种全新的实验方法。
其他文献
肺癌严重影响人们的身体健康,利用计算机断层扫描(Computed Tomography,CT)技术对肺肿瘤进行分割可以为肺癌的诊断与治疗提供可靠依据。为实现肺部肿瘤的自动化分割,本文对基于深度学习的CT影像肺肿瘤分割技术进行研究,主要内容包括针对二维、三维CT图像的分割算法研究和人工合成数据集的制作与分割算法验证。本文首先采用了一种面向肺肿瘤分割的组织增强方法,对数据集进行扩充。然后针对二维CT图
学位
主动脉夹层是一种发病急、进展快、死亡率极高的心血管疾病。多层裸支架是一种新的胸主动脉腔内修复技术(TEVAR),可在促进假腔血栓化的同时保证分支动脉畅通。然而,多层裸支架术后主动脉假腔再膨大是其主要并发症之一,严重影响患者中长期生存率,加重患者经济负担。TEVAR术后主动脉再膨大是一个持续发展的病理过程,可能涉及复杂的血管壁生长和重塑行为。众所周知,壁面应力与流体对壁面的剪应力(WSS)等力学因素
学位
生物组织在病变初期的力学特性的变化通常比较明显,因此对生物组织弹性和粘弹性的定量表征对于疾病的早期诊断具有重要意义。光学相干弹性成像(Optical Coherence Elastography,OCE)利用低相干光干涉,结合特定的加载方法,能够在体对生物组织表面和内部的力学特性进行检测。但是现有的OCE技术深度测试范围小,过渡简化弹性波传播理论导致组织弹性测试准确度低,不能对粘弹性进行有效测试。
学位
热障涂层(TBC)技术是发展先进重型燃气轮机的核心技术之一,其在制备及服役过程引入的残余应力,尤其是界面区域的热生长氧化应力,是引发界面损伤破坏、导致涂层功能失效的主要因素。因此,实现TBC结构内部特别是界面区域应力的定量表征,对于涂层系统的性能评价及寿命评估具有重要意义。荧光与太赫兹等光谱力学手段可能成为TBC应力表征的有效手段。本文将红宝石荧光、稀土荧光与太赫兹时域谱相结合,开展了面向热障涂层
学位
随着智能设备的发展,智能机器人等智能设备已经逐渐融入社会生活,成为便利人们生活的重要设备。其中能够准确感知外部环境,例如压力、湿度、温度等信号,决定着智能设备是否可以做出与环境相关的正确响应。此时,传感器成为智能设备不可或缺的重要零部件。为了能够适应不同的工作环境,柔性传感器逐渐开始出现在智能设备当中。本文围绕柔性力学量传感器开展了研究工作,主要工作如下:将超弹性材料与电阻应变片相结合,研制了一系
学位
心血管疾病已经成为中国的重大公共卫生问题,其患病率及死亡率仍处于上升阶段,因此,提高疾病的医疗诊断和分析预测能力具有重要意义。冠状动脉生理条件下血流和血管壁力学特性与血管疾病的发生发展密切相关。基于在体高分辨率影像对血流动力学和血管壁的力学特性进行表征的技术匮乏。本文结合血管内光学相干断层成像(Intravascular Optical Coherence Tomography,IVOCT)和血管
学位
聚合物基底薄膜结构被广泛应用于电子元件、生物医学等领域。然而,在对基底进行镀膜时,往往会因薄膜和基底之间的热膨胀系数差异、晶格失配以及薄膜生长过程中的环境变化等因素,在试件中产生残余应力。这种自平衡的残余应力会通过改变膜基结构的力学性能,影响构件在服役过程中的裂纹萌生和演化过程,从而对其使用寿命以及耐用性产生很大的影响。本文围绕此问题展开了三方面的研究:第一,建立了考虑残余应力的单层膜基结构二维弹
学位
制备出更优异的负极材料是提高锂离子电池性能的有效策略之一,也是当前锂离子电池研究领域的一大热点。具有3D框架微结构的层状复合电极材料为研究人员从细观尺度设计负极材料提供了广阔空间,这种负极材料在加快锂离子传输效率、提高导电率的同时还可缓解较大的体积膨胀,并实现多种优异性能的“叠加”,是一种极具应用前景的负极材料。然而,关于其电化学-力学机理的理论研究尚不完备,缺乏材料结构设计与优化相关的理论指导。
学位
向列型液晶弹性体(NLCE)是向列型液晶分子与高分子链聚合形成的一种新型智能材料,它同时具有液晶的各向异性与高分子材料的弹性。NLCE因其独特的机械和光学等性能,比如软弹性、双折射,使其在诸多交叉学科中显露出巨大的价值。NLCE可广泛应用于人造肌肉、软体机器人、智能驱动器、柔性传感器等领域,因此研究其在各类外界刺激下的变形响应具有十分重要的意义。由于NLCE通常可以承受非常大的弹性变形,且包含液晶
学位
通过控制周期性含孔高弹体内部和外部压力差,可以使材料中的应力和几何构型发生变化,进而实现超材料的形貌与带隙调控。气压激励是一种便捷有效的控制方式,可编码性强,可定制化地调节不同孔洞内部的压力,实现结构变形的局部控制。针对气压激励下含孔高弹体的力学响应,本文对代表性单元(RVE)的选取进行了分析与讨论,并基于理论分析和数值方法研究了结构的屈曲行为、稳定性以及带隙特性。本文的主要内容及结果包括:1.含
学位