二维材料的制备及其电催化固氮性能研究

来源 :中国石油大学(北京) | 被引量 : 0次 | 上传用户:phoebe_1012
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
氨(NH3)在人类历史和地球生态中都起着至关重要的作用。据估计,如果不再提供基于NH3的无机肥料,世界上将有近一半人口处于饥饿状态。此外,NH3作为一种高效的能量载体(重氢密度为17.8%)和一种有希望的运输燃料(在室温下通过压缩易于液化和运输)并且没有产生CO2的排放。Haber-Bosch工艺方法需要苛刻的反应条件(300-550°C,100-350 atm)才能裂解极其惰性的N≡N键(941 k J·mol-1)。此外,通过化石燃料产生的H2必然造成大量二氧化碳的排放。因此,迫切需要开发一种环境友好和资源节约的合成氨方法。NRR因此也一直受到人们的广泛关注,同时也进行了大量研究。然而,电催化合成NH3面临高反应障碍的挑战,需要使用合适的催化剂来提高催化活性氨。二维材料因其独特的化学性能和高度的物理性能,二维纳米材料被广泛的应用于电催化,光催化,凝固态物理,医学生物等领域。在本论文中我们研究了二维材料g-C3N4和MnO2纳米片的电催化固氮性能。首先我们合成了g-C3N4并测试了其NRR活性。g-C3N4表现出出色的NRR活性,在0.1 M Na SO4条件下-0.60 V时,获得了25.98 ug·h-1·mg-1的NH3生产效率和8.22%法拉第效率。并且在产物中并没有检测到N2H4的存在,说明经g-C3N4具有优良的选择性。经过6次的循环测试和12小时反应测试,g-C3N4催化剂显示出优越的稳定性。我们也研究了MnO2纳米片的NRR活性,并通过理论计算(DFT)揭示了其反应机理。我们发现由MnO2纳米片中氧空位引起的高自旋态Mn3+-Mn3+对极大地增强了催化活性。Mn的d轨道与N2的轨道之间的强电子转移迫使N2具有自由基性质,从而激活氢化过程并削弱N≡N键。根据理论计算(DFT)结果,我们通过使用甲基三苯基溴化磷(MPB)诱导更多的Mn3+-Mn3+对,设计了具有富氧空位(Mn3-3-MnO2)的介孔MnO2纳米片。氨水产量高达147.2μg·h-1·mg-1cat。相对于可逆氢电极电势为-0.75 V,法拉第效率为11%。此外,这种介孔的MnO2纳米片在连续的6次循环测试和24小时电解电流密度后,显示出优异的耐久性,NH3收率和法拉第效率的变化可忽略不计。我们的发现为设计用于电催化氮还原的高活性过渡金属催化剂提供了一种方法。
其他文献
高碳醇又作为工业中洗涤剂和增塑剂的原料,具有广阔的市场。目前,工业上高碳醇主要是通过高碳烯烃的均相氢甲酰化反应继而加氢得到的。与非均相反应相比,均相反应具有转化率高,选择性好,反应条件温和等优点,但是其催化剂与产物的分离问题始终是困扰工业应用的一大难题。基于课题组在氢甲酰化领域的积累,本论文选择使用磁性纳米Fe3O4粒子作为载体材料,制备磁性的铑基催化剂,利于反应后催化剂的分离。在此基础上,研究了
学位
党参(Codonopsis pilosula(Franch.)Nannf.)为桔梗科多年生草本植物,十大陇药之一,栽培历史悠久。多糖为其主要药效成分,在调节机体免疫、清除自由基、抗衰老等方面发挥重要作用。党参主产于甘肃省渭源、陇西等地的北部干旱半干旱山区,随全球气候变暖,干旱现象频发,影响党参生长发育和品质形成,但影响机制尚未明确。基于此,本研究通过室外盆栽控水试验,按田间最大持水量的90%-85
学位
精对苯二甲酸(Purified Terephthalic Acid,PTA)是一种重要的石油化工产品,广泛应用于各个行业。生产PTA时会产生大量含有难降解芳香族有机物的废水,如不能有效处理则会对生态环境及人体健康产生极大影响。PTA废水中主要的几种有机污染物为乙酸、苯甲酸(Benzoic Acid,BA)、对苯二甲酸(Terephthalic Acid,TA)、邻苯二甲酸(Phthalate Ac
学位
乙烯、丙烯是重要的石油化工基础原料,数据显示2020年全球消耗量在25 Mt以上,且需求量仍在逐步攀升。通过催化裂解将C4烷烃转化为乙烯、丙烯,不仅可以提高C4烷烃的化工利用效率,还可以缓解乙烯、丙烯供需缺口,有重要的应用价值和前景。ZSM-5分子筛因独特的孔道结构,可调的酸性质及良好的稳定性,而备受关注。分子筛微观Al分布是影响催化剂酸性质及催化性能的重要因素。本论文从后处理以及引入杂原子B物种
学位
为了应对能源和环境问题,人们把注意力投向了绿色可再生能源。氢能在众多绿色能源中脱颖而出。在大规模制氢中,电催化水分解技术环保且易于使用。电催化水分解过程中,阴极发生析氢反应(HER),阳极发生析氧反应(OER)。迄今为止,Pt/C是HER公认的高效催化剂,对于OER,公认的高效催化剂是Ru O2和Ir O2。但贵金属催化剂资源匮乏且价格昂贵。所以,需要设计合成不含贵金属的HER和OER催化剂。本文
学位
由于酚酸类化合物具有抗氧化、抗癌、抗炎以及心血管保护等多重作用,因此对该类化合物的高效识别与检测变得尤为重要。然而,传统的检测技术存在不足,无法实现快速、低浓度、便携检测等要求。与传统检测方法相比,表面增强拉曼散射(SERS)技术具有无损检测、指纹特性好以及高效检测的优点,在痕量活性分子的检测中具有独特优势。值得注意的是,在使用传统贵金属SERS基底检测酚酸类化合物时,发现该类化合物拉曼截面值低并
学位
目的:1.研究藏红花苷-1在常氧及缺氧大鼠体内吸收的差异,并分析藏红花苷-1的主要代谢产物。2.建立外翻肠囊模型,探究藏红花苷-1在常氧及缺氧大鼠不同肠道吸收的差异,结合体内实验,分析藏红花苷-1吸收的主要肠道。3.研究藏红花苷-1主要代谢产物——藏红花酸在常氧及缺氧大鼠体内各组织分布差异,分析急性缺氧损伤是否会造成藏红花酸的组织分布变化。方法:1.采用UPLC-Q-TOF-MS技术,建立同时测定
学位
全固态离子选择性电极作为一种常见的电位型离子传感器,其具有制备成本低、检测灵敏度高、易于微型化等优点。早期的涂丝电极直接将离子选择性膜修饰在基底电极上,其界面不稳定,离子-电子信号转换效率低,灵敏度和稳定性差。基于此,本论文首先利用石油沥青为原料,制备一种化学稳定性好、比电容大、比表面积高的多孔碳材料作为固态转接层增加在离子选择性膜和电极基底之间,为离子-电子信号转换提供一个稳定的相界面,提高了电
学位
近年来,为了减少对于石油天然气的依赖,燃料电池已然成为国家重点发展的前沿技术之一。氢气作为氢燃料电池的原料在国家的新能源战略中扮演着重要的角色。我国的氢气主要来源于化石燃料制氢、化工副产制氢、电解水制氢和醇制氢等工艺。化石燃料产生氢气和化工副产制氢中不可避免的含有微量CO,微量的CO会使质子膜交换燃料电池的电极失活。因此研究富氢气中微量CO的去除具有非常重要的现实意义和广阔的工业应用前景。本论文研
学位
化石能源是现今社会发展利用的主要能源,但是化石能源的大量开采和利用使人类面临着能源供应不足和环境污染的威胁,探索新型可再生能源已迫在眉睫。光催化分解水制氢因其将清洁、高效的氢能与储量丰富的太阳能相结合,而被认为是最具发展前景的绿色技术之一。然而,作为光催化技术核心的光催化剂存在着光吸收能力差、载流子复合严重等问题,所以改善光催化剂性能是研究者们关注的重点。本论文以具有可见光吸收能力的CdS为研究对
学位