特殊图的(d,1)—全标号

来源 :河北工业大学 | 被引量 : 0次 | 上传用户:sydna521
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
设d是一个给定的非负整数,图G的一个k-(d,1)-全标号是一个映射f:VG∪EG→{0,1,…,k},使得:对图G中任意两个相邻的顶点vi,vj,有|f(vi)-f(vj)|≥1;对任意两条相邻边ei,ej,有|f(ei)-f(ej)|≥1;对任意两个关联的点和边vi,ej,有|f(vi)-f(ej)|≥d.图G的所有(d,1)-全标号的最小的k,称为图G的(d,1)-全标号数,记为λTd(G).本文完全确定了圈的全图T(Cn)的(d,1)-全标号数。
其他文献
本文通过分析高校现行的质量管理方式为前提,讨论企业全面质量管理在高校推行的可行性,同时论述全面质量管理在高校内部运用的具体方法与方式,希望能够为广大的高校领导者与
设 S是连通图G中的一个边子集,若 G- S不连通且它的每个连通分支的阶至少为k,则称 S是 G的一个k限制边割.图 G的最小k限制边割的边数称为 G的 k限制边连通度,记为 Afc(G).当 k=
线性算子理论的基本问题之一是研究分类和等价性问题,蒋春澜等人计算了Cowen-Douglas算子的换位代数的Ko群,并证明了Elliott不变量是Cowen-Douglas算子的完全相似不变量.本文是
本文主要针对约束具有非凸块可分结构的优化问题提出了修正的SQP型并行变量分配(PVD)算法,并给出了算法的收敛性证明。论文安排如下:  第一章介绍了并行算法的发展,研究现状和
微分方程与积分方程是微积分理论中的非常重要而又密切联系的两个分支。微分方程在很多学科领域内有着重要的作用,因此研究微分方程解的存在性是十分重要的。但是直接研究某些
随着模糊数学的发展,要求各种数学结构不但要由论域向其幂集上提升,而且还要求向模糊幂集上提升.运算的提升可以得到各种超结构,如幂群、模糊幂群、幂环、模糊幂环、幂线性空间等
本文主要讨论能量既依位势又依速度的二阶特征值问题:L=(2+λu+v)=λ2x所对应的Bargmann系统.  首先介绍了一些基本概念,然后通过辅谱问题及等谱相容性条件定义合理的双Hamilt
符号模式矩阵是组合数学中的一个重要研究课题,其重要原因之一是它在经济学,生物学,化学,社会学,计算机科学等众多学科中具有广泛的实际应用前景。本文主要研究了一类特殊本原不可
常微分方程是现代分析数学的一个重要分支,它在自然科学与工程技术中都有着广泛的应用,例如流体力学、材料力学、天文学、经济学、生物学、医学等方面的许多问题均可以归结为求
随着社会的发展和进步,教育体制的改革与完善,全国的校园足球活动受到了前所未有的关注.在校园足球积极发展的环境下,其中暴露出了很多现实问题,成为校园足球活动发展的阻碍,