论文部分内容阅读
利用全矢量平面波展开法对三角形排布孔包层-圆纤芯结构的光子晶体光纤的光子带隙特性进行了数值模拟,对比研究了传统光子晶体光纤(空气-石英纤芯结构)和全固态光子晶体光纤(非空气-石英纤芯结构)的光子带隙(导模)与结构参数(包层孔直径dclh、包层孔间距Λ和包层孔填充比f)的关系,设计出了一组合适的结构参数(纤芯直径dco=5.3μm,包层孔材料的折射率nclh=1.65,dclh=1.0μm,Λ=2.0μm,f=0.7),可以使相应的全固态光子晶体光纤工作在1 550 nm的现代光通信波长上,且光子带隙可以达100 nm。
The photonic bandgap characteristics of photonic crystal fibers with triangularly arranged hole-cladding core and core-shell structure were numerically simulated by full vectorial plane wave expansion method. Comparing the photonic bandgap properties of conventional photonic crystal fiber (air-quartz core structure) and all solid state The photonic bandgap (guided mode) of photonic crystal fiber (non-air-quartz core structure) is related to the structural parameters (cladding diameter dclh, cladding hole spacing Λ and cladding hole filling ratio f) The appropriate structural parameters (core diameter dco = 5.3 μm, refractive index of cladding material nclh = 1.65, dclh = 1.0 μm, Λ = 2.0 μm, f = 0.7) allow the corresponding all-solid photonic crystal fiber to work At a modern optical communication wavelength of 1 550 nm, the photonic band gap can reach 100 nm.