论文部分内容阅读
特征提取与模式分类是人脸识别的两个关键问题。针对人脸识别中的高维和小样本问题,从人脸特征的提取与降维算法入手,提出基于受限玻尔兹曼机(RBM)的二次特征提取及降维算法模型。首先把图像均匀分成若干局部图像块并进行量化,再对图像进行Gabor小波变换,通过RBM对得到的Gabor人脸特征进行编码,学习数据更本质的特征,从而达到对高维人脸特征降维的目的;并以此为基础提出基于深度信念网络(DBN)的多通道人脸识别算法。在ORL、UMIST和FERET人脸库上对不同样本规模和不同分辨率的图像进行实验,识别结果