论文部分内容阅读
强化学习是一类用于学习策略的机器学习方法,通过模拟人的学习过程,与所处环境不断交互来学习动作策略,用以获得最大累积回报.以设计师在翼型气动设计中的增量修型过程为例,给出强化学习在气动优化设计中的要素定义和具体算法的实现.研究了预训练中选择不同示例对预训练和强化学习结果的影响,并将强化学习得到的策略模型在其他环境中进行了迁移测试验证.结果 表明,合理的预训练能够有效提高强化学习的效率和最终策略的鲁棒性,且所形成的策略模型具有较好的迁移能力.