论文部分内容阅读
This paper addresses the problem of adaptive neural control for a class of uncertain pure-feedback nonlinear systems with multiple unknown state time-varying delays and unknown dead-zone. Based on a novel combination of the Razumikhin functional method, the backstepping technique and the neural network parameterization, an adaptive neural control scheme is developed for such systems. All closed-loop signals are shown to be semiglobally uniformly ultimately bounded, and the tracking error remains in a small neighborhood of the origin. Finally, a simulation example is given to demonstrate the effectiveness of the proposed control schemes.
This paper addresses the problem of adaptive neural control for a class of uncertain pure-feedback nonlinear systems with multiple unknown state time-varying delays and unknown dead-zone. Based on a novel combination of the Razumikhin functional method, the backstepping technique and the neural network parameterization, an adaptive neural control scheme is developed for such systems. All, closed-loop signals are shown to be semiglobally necessarily terminated bounded, and the tracking error remains in a small neighborhood of the origin. Finally, a simulation example is given to demonstrate the effectiveness of the proposed control schemes.