论文部分内容阅读
讨论了BRBarmish提及的“leapfrog”现象.并给出了可降阶多项式的根对参数逐点连续性的一般性证明.之后,引入了参数集中的阶次非增路径的概念,并将排零条件推广到可降阶含参多项式系统.我们改进了Kharitonov’s定理和之后的一些多面体多项式族方面的结果.
Discusses the “leapfrog” phenomenon mentioned by B. R. Armish. The general proof of the point-by-point continuity of the parameters of the reduced-order polynomial is given. Then, the concept of order non-increasing path in parameter set is introduced, and the zero-row condition is generalized to the reduced-order polynomial system. We improve the results of Kharitonov’s theorem and some later polyhedron polynomial families.