论文部分内容阅读
The novel Bi-substituted rare-earth iron garnet films were grown by the modified liquid phase epitaxy (LPE) technique for use as a 45° Faraday rotator in optical isolators. First, single crystals of Y3 Fe5 O12(YIG), with a lattice constant of 1. 237 8 nm, were grown by means of the Czochralski method. Using the seed crystal of YIG instead of the conventional non-magnetic garnet of Gd3Ga5O12 (GGG) as a substrate,a film of BiYbIG was grown by means of the LPE method from Bi2O3 - B2O3 fluxes. The structural, magnetic and magneto-optical properties of BiYbIG LPE film/YIG crystal composite have been investigated using directional X-ray diffraction (XRD), electron probe microanalysis (EPMA), vibrating sample magnetometer (VMS) and near-infrared transmission spectrometry. The saturation magnetization 4πMs has been estimated to be about 1.2×10 6 A/m. The Faraday rotation spectrum was measured by the method of rotating analyzer ellipsometry (RAE) with the wavelength varied from 800 nm to 1 700 nm. The resultant Bi0.37 Yb2.63 Fe5 O12LPE film/YIG crystal composite showed an increased Faraday rotation coefficient due to doping Bi3+ ions into the dodecahedral sites of the magnetic garnet without increasing absorption loss, therefore a good magnetooptic figure of merit,defined by the ratio of Faraday rotation and optical absorption loss, has been achieved of 21.5 and 30.2 (°)/dB at 1 300 and 1 550 nm wavelengths respectively and room temperature. Since Yb3+ and Y3+ ions provide the opposite contribution to the wideband and temperature characteristics of Faraday rotation,the values of Faraday rotation wavelength and temperature coefficients were reduced to 0.06 %/nm and 0.007(°)/℃ at 1 550 nm wavelength, respectively.