论文部分内容阅读
Since Y has a great solid solubility in magnesium alloys, it helps enhancing the heat-resistant property of magnesium alloys. The effects of Y on microstructures and mechanical properties of Mg-6Al alloy have been studied in this work. The results show that Y addition refines grains of Mg-6Al alloy, and reduces the amount of the Mg 17 Al 12 phase. At the same time, the high melting-point Al 2 Y phase particles are formed. According to the mathematical model of the two-dimensional lattice misfit proposed by Braffit, it is believed that the Al 2 Y particles can serve as the nucleation sites for α-Mg. After T6 treatment, both elongation and ultimate tensile strength of Mg-6Al alloy at the room temperature and high-temperature increased firstly and then decreased, with increasing Y addition. The peak mechanical properties were achieved in the Mg-6Al-1.2Y alloy system. Y addition appears to change the fracture characteristic of Mg-6Al alloy. With 1.2wt%Y, the fracture surface of the alloy showed a lot of dimples and tearing ridges which connected the microscopic dimples and the fracture is mixed fracture of quasi-cleavage and ductile fracture.
Since Y has a great solid solubility in magnesium alloys, it helps enhancing the heat-resistant property of magnesium alloys. The effects of Y on microstructures and mechanical properties of Mg-6Al alloy have been studied in this work. The results show that Y addition refines grains of Mg-6Al alloy, and reduces the amount of the Mg 17 Al 12 phase. At the same time, the high melting-point Al 2 Y phase particles are formed. According to the mathematical model of the two-dimensional lattice misfit proposed by Braffit, it is believed that the Al 2 Y particles can serve as the nucleation sites for α-Mg. After T6 treatment, both elongation and ultimate tensile strength of Mg-6Al alloy at the room temperature and high-temperature increased first and With decreased, with increasing Y addition. The peak mechanical properties were achieved in the Mg-6Al-1.2Y alloy system. Y addition appears to change the fracture characteristic of Mg-6Al alloy. With 1.2 wt% Y, the fracture surface of the alloy showed a lot of dimples and tearing ridges which connected the microscopic dimples and the fracture is mixed fracture of quasi-cleavage and ductile fracture.