论文部分内容阅读
A single anthryl appended meso-tetraphenylporphyrin (TPP) dyad has been synthesized and applied in fluorescence sensing of iodine based on the intramolecular excitation energy transfer. The molecular recognition of the sensor is based on the interaction of iodine with inner anthracene moiety of the dyad, while the signal reporter for the recognition process is the TPP fluorescence quenching. Because the emission spectrum of anthracene is largely overlapped with the Soret band absorption of TPP, intramolecular excitation energy transfer interaction occurs between the donor, anthracene and acceptor, TPP. This energy transfer leads to TPP fluorescence emission by excitation of anthracene. The sensor was constructed by immobilizing the dyad in a plasticized poly(vinyl chloride) (PVC) membrane. The sensing membrane shows higher sensitivity compared to the sensors by using anthracene, TPP, or a mixture of anthracene and TPP as sensing materials. Under the optimum conditions, iodine in a sample solution can be determined from 2.04 to 23.6 mmol·L-1 with a detection limit of 33 nmol·L-1. The sensing membrane shows satisfactory response characteristics including good reproducibility, reversibility and stability, as well as the short response time of less than 60 s. Except for Cr2O72- and MnO4-, other common metal ions and anions in foodstuff do not interfere with iodine determination. The proposed method was applied in the determination of iodine in table salt samples. The results agree well with those obtained by other methods.
A single anthryl appended meso-tetraphenylporphyrin (TPP) dyad has been synthesized and applied in fluorescence sensing of iodine based on the intramolecular excitation energy transfer. The molecular recognition of the sensor is based on the interaction of iodine with inner anthracene moiety of the dyad, while the signal reporter for the recognition process is the TPP fluorescence quenching. The energy transfer of anthracene is largely overlapping with the Soret band absorption of TPP, intramolecular excitation energy transfer interaction occurs between the donor, anthracene and acceptor, TPP. This energy transfer The sensor was constructed by immobilizing the dyad in a plasticized poly (vinyl chloride) (PVC) membrane. The sensing membrane shows higher sensitivity compared to the sensors by using anthracene, TPP, or a mixture of anthracene and TPP as sensing materials. Under the optimum conditions, iodine in a samp le solution can determined from 2.04 to 23.6 mmol·L-1 with a detection limit of 33 nmol·L-1. The sensing membrane shows satisfactory response characteristics including good reproducibility, reversibility and stability, as well as the short response time of less than 60 s. Except for Cr2O72- and MnO4-, other common metal ions and anions in foodstuff do not interfere with iodine determination. The proposed method was applied in the determination of iodine in table salt samples. The results agree well with those obtained other methods.