论文部分内容阅读
针对基于目标函数的直觉模糊聚类方法容易陷于局部最优值的问题,提出了一种改进的密度函数初始化方法。该方法首先利用样本密度函数在较高局部密度的区域中选取c个样本,然后遍历剩余样本进行粗归类,并计算每类各维数据的平均值作为初始聚类中心。最后通过典型实例验证,该方法不仅解决了容易陷入局部极小值的问题,同时迭代次数减少,收敛速度加快,提高了聚类性能。