论文部分内容阅读
摘要:本文通过SPSS软件,对听障大学生教学评价数据进行多种方法的统计分析,将教学评价指标、参与课程等进行分类,同时比较不同学科类别、不同职称授课教师的教学评价结果进行分析,以便对教学评价数据更好的利用,对听障大学生课堂教學管理提供更加有意义的信息。
关键词:听障大学生; 教学评价; 统计分析
【中图分类号】G762
学生教学评价,即学生作为评价主体对教师的教学质量进行评价。其主要目的是为教师的教学提供有用的反馈,以促进教师提高教学质量,从而为提高学生的学习效果服务 [1、2]。听障大学生,作为特殊的学生群体,日常教学应赋予更多的关心和爱心。对听障大学生教学评价数据的研究,可以促进从事特殊教育的老师改善教学方法,调整教学态度,进一步提高特殊高等教育的课堂教学质量显得格外重要。
数据数理统计分析是数学的一个分支,是指研究如何有效地收集和使用带有随机性影响的数据。通过数据的数理统计分析,可以进行数据的整理和问题的推断[3]。现代数理统计分析的一个显著特点就是运用计算机实现有关的统计计算与分析,目前也有许多应用计算机软件对于教学质量进行分析讨论的报道。本文利用SPSS软件(Statistical Product and Service Solutions)对听障大学生教学评价数据进行统计分析,以更好的发挥评价的诊断、激励和导向的作用。
一、数据分析来源
本文数据来源于某大学某学期听障大学生教学评价数据,共涉及25门课程。教学评价分为十项指标,分别为“tm1”:仪表端庄,教态自然,精神饱满;“tm2”:上课准时、足时,认真负责,严格要求学生;“tm3”:关怀和尊重学生,有固定的辅导和答疑时间师生关系融洽;“tm4”:教学目标、要求、考核形式明确,推荐有助我们学习的参考文献;“tm5”:授课内容充实,信息量大,重难点突出,进度安排适当;“tm6”:作业有利于我们掌握知识和自主学习,批改和分析认真;“tm7”:思路清晰,阐述准确,语言规范生动;“tm8”:因材施教,注重学生创新意识和能力培养;“tm9”:教学方法灵活,教学手段恰当,注重互动,课堂气氛活跃;“tm10”:掌握了本课程的核心内容,激发了学生学习兴趣,提高了分析问题、解决问题的能力。
二、分析方法
本文主要使用了SPSS软件中的描述性统计分析(Descriptive Statistics,得到原始数据转化成标准化的取值,可以直观了解数据的情况,同时便于进一步分析);K-S单样本检验分析(Kolomogorov- Simirnov One-sample Test,主要考察数据是否符合正态分布);主成分分析(Principal Component Analysis,将多个变量通过线性变换以选出较少个数重要变量);K中心聚类分析(K-means cluster analysis,将数据进行分类,辨别样本之间的亲疏关系);单因素方差分析(one-way ANOVA,调查按某个研究因素的不同水平分组后该因素的效应)。
三、结果与分析
(一)学生教学评价整体情况及正态分布分析
分析教学评价整体情况可以了解听障大学生课堂教学质量的总体情况。从表1可以看出,该学期听障大学生教学评价总分范围在81.48-99.82之间,平均成绩为89.69±3.62。利用SPSS软件进行正态分布分析,得到表2及图1。从表2得到单样本K-S检验Z统计值为0.500,渐近显著性水平为0.964,远大于0.05,因此教学评价结果符合正态分布。
(二)学生教学评价指标主成份分析
利用SPSS进行学生教学评价指标主成份分析后,得到表3。主成份分析法只提取到1个成分,且变量系数均接近1,因此可以认定本体系10项指标相互独立,影响较小。
(三)不同课程学生教学评价聚类分析
通过SPSS软件K中心聚类分析方法,将25门课程进行聚类分析,得到表4、表5。从表4可以看出,通过聚类分析,通过学生教学评价成绩将25门课程分为了2类,1类优秀成绩为15门课程,2类良好成绩为10门课程。表5则表示每门课程所属聚类。
(四)学生教学评价指标的聚类分析
通过SPSS软件K中心聚类分析方法,将学生教学评价十项指表每门课程的得分进行聚类分析,得到表6、表7。通过聚类分析,将评价指标分为了2类,指标1、2、3被归为类别1,可以看出主要是指教师的教学态度;指标4-10被归为类别2,主要考查教师的教学业务水平。
(五)不同学科类别科目学生教学评价差异性分析
根据课程不同性质,将参与评价的25门课程分为了学生思政(两课)类、文科(外语、语言等)类、理科(数学、物理等)类。
利用SPSS进行单因素方差分析。文科类课程与理科类课程学生教学评价成绩有显著性差异,且文科类课程得分要高于理科类课程。原因可能由于理科类课程需要大量逻辑思维能力,听障大学生可能在这方面有所欠缺,因此课堂教学效果不如文科类课程。此外,学生思政类课程与文科、理科类课程均没有显著性差异,其得分介于两者之间。
(六) 不同职称教师授课学生教学评价差异性分析
根据授课教师职称不同,将参与评价的25门课程分为了教授授课、副教授授课及讲师授课三类。
利用SPSS进行单因素方差分析。教授授课类学生教学评价得分与副教授、讲师授课类直接均存在着显著性差异,且总分均值要高于其他两类。可见,教授因为在知识、授课经验上的累积,其教学效果要好于副教授及讲师。副教授及讲师教学评价得分则无显著性差异。
四、结语
本文通过计算机软件等辅助手段,将原本多而无规律的教学评价数据进行了分析处理,获得了许多有价值的信息,这些都有利于教育管理进行优化管理,更好的做出决策,为强化教学管理、提高教学质量打下基础。本文只是在听障大学生教学评价过程中,利用计算机辅助手段进行分析的初步探索。教学评价是一项非常复杂的质量监控的过程,如何进一步利用计算机软件等为教学质量提供支持,有待我们继续研究。
参考文献
[1] 鲁进勇,夏建刚. 本科教学质量评价的文献综述[J].学问·科教探索,2008,18:24-25.
[2] 陈剑启,江晓帆. 国内外关于学生评教的相关研究综述[J]. 技术监督教育学刊,2006,02:45-49.
[3] 韦来生. 数理统计[M]. 北京:科学出版社,2008:1-7.
关键词:听障大学生; 教学评价; 统计分析
【中图分类号】G762
学生教学评价,即学生作为评价主体对教师的教学质量进行评价。其主要目的是为教师的教学提供有用的反馈,以促进教师提高教学质量,从而为提高学生的学习效果服务 [1、2]。听障大学生,作为特殊的学生群体,日常教学应赋予更多的关心和爱心。对听障大学生教学评价数据的研究,可以促进从事特殊教育的老师改善教学方法,调整教学态度,进一步提高特殊高等教育的课堂教学质量显得格外重要。
数据数理统计分析是数学的一个分支,是指研究如何有效地收集和使用带有随机性影响的数据。通过数据的数理统计分析,可以进行数据的整理和问题的推断[3]。现代数理统计分析的一个显著特点就是运用计算机实现有关的统计计算与分析,目前也有许多应用计算机软件对于教学质量进行分析讨论的报道。本文利用SPSS软件(Statistical Product and Service Solutions)对听障大学生教学评价数据进行统计分析,以更好的发挥评价的诊断、激励和导向的作用。
一、数据分析来源
本文数据来源于某大学某学期听障大学生教学评价数据,共涉及25门课程。教学评价分为十项指标,分别为“tm1”:仪表端庄,教态自然,精神饱满;“tm2”:上课准时、足时,认真负责,严格要求学生;“tm3”:关怀和尊重学生,有固定的辅导和答疑时间师生关系融洽;“tm4”:教学目标、要求、考核形式明确,推荐有助我们学习的参考文献;“tm5”:授课内容充实,信息量大,重难点突出,进度安排适当;“tm6”:作业有利于我们掌握知识和自主学习,批改和分析认真;“tm7”:思路清晰,阐述准确,语言规范生动;“tm8”:因材施教,注重学生创新意识和能力培养;“tm9”:教学方法灵活,教学手段恰当,注重互动,课堂气氛活跃;“tm10”:掌握了本课程的核心内容,激发了学生学习兴趣,提高了分析问题、解决问题的能力。
二、分析方法
本文主要使用了SPSS软件中的描述性统计分析(Descriptive Statistics,得到原始数据转化成标准化的取值,可以直观了解数据的情况,同时便于进一步分析);K-S单样本检验分析(Kolomogorov- Simirnov One-sample Test,主要考察数据是否符合正态分布);主成分分析(Principal Component Analysis,将多个变量通过线性变换以选出较少个数重要变量);K中心聚类分析(K-means cluster analysis,将数据进行分类,辨别样本之间的亲疏关系);单因素方差分析(one-way ANOVA,调查按某个研究因素的不同水平分组后该因素的效应)。
三、结果与分析
(一)学生教学评价整体情况及正态分布分析
分析教学评价整体情况可以了解听障大学生课堂教学质量的总体情况。从表1可以看出,该学期听障大学生教学评价总分范围在81.48-99.82之间,平均成绩为89.69±3.62。利用SPSS软件进行正态分布分析,得到表2及图1。从表2得到单样本K-S检验Z统计值为0.500,渐近显著性水平为0.964,远大于0.05,因此教学评价结果符合正态分布。
(二)学生教学评价指标主成份分析
利用SPSS进行学生教学评价指标主成份分析后,得到表3。主成份分析法只提取到1个成分,且变量系数均接近1,因此可以认定本体系10项指标相互独立,影响较小。
(三)不同课程学生教学评价聚类分析
通过SPSS软件K中心聚类分析方法,将25门课程进行聚类分析,得到表4、表5。从表4可以看出,通过聚类分析,通过学生教学评价成绩将25门课程分为了2类,1类优秀成绩为15门课程,2类良好成绩为10门课程。表5则表示每门课程所属聚类。
(四)学生教学评价指标的聚类分析
通过SPSS软件K中心聚类分析方法,将学生教学评价十项指表每门课程的得分进行聚类分析,得到表6、表7。通过聚类分析,将评价指标分为了2类,指标1、2、3被归为类别1,可以看出主要是指教师的教学态度;指标4-10被归为类别2,主要考查教师的教学业务水平。
(五)不同学科类别科目学生教学评价差异性分析
根据课程不同性质,将参与评价的25门课程分为了学生思政(两课)类、文科(外语、语言等)类、理科(数学、物理等)类。
利用SPSS进行单因素方差分析。文科类课程与理科类课程学生教学评价成绩有显著性差异,且文科类课程得分要高于理科类课程。原因可能由于理科类课程需要大量逻辑思维能力,听障大学生可能在这方面有所欠缺,因此课堂教学效果不如文科类课程。此外,学生思政类课程与文科、理科类课程均没有显著性差异,其得分介于两者之间。
(六) 不同职称教师授课学生教学评价差异性分析
根据授课教师职称不同,将参与评价的25门课程分为了教授授课、副教授授课及讲师授课三类。
利用SPSS进行单因素方差分析。教授授课类学生教学评价得分与副教授、讲师授课类直接均存在着显著性差异,且总分均值要高于其他两类。可见,教授因为在知识、授课经验上的累积,其教学效果要好于副教授及讲师。副教授及讲师教学评价得分则无显著性差异。
四、结语
本文通过计算机软件等辅助手段,将原本多而无规律的教学评价数据进行了分析处理,获得了许多有价值的信息,这些都有利于教育管理进行优化管理,更好的做出决策,为强化教学管理、提高教学质量打下基础。本文只是在听障大学生教学评价过程中,利用计算机辅助手段进行分析的初步探索。教学评价是一项非常复杂的质量监控的过程,如何进一步利用计算机软件等为教学质量提供支持,有待我们继续研究。
参考文献
[1] 鲁进勇,夏建刚. 本科教学质量评价的文献综述[J].学问·科教探索,2008,18:24-25.
[2] 陈剑启,江晓帆. 国内外关于学生评教的相关研究综述[J]. 技术监督教育学刊,2006,02:45-49.
[3] 韦来生. 数理统计[M]. 北京:科学出版社,2008:1-7.