论文部分内容阅读
【中图分类号】G633.6
例题教学是课堂教学中的一个重要环节,俗语说:"鱼儿离不开水",同样数学离不开例题教学。切实加强各类型例题的教学,对于学生理解和掌握基础知识,培养能力,发展智力,训练思维是至关重要的。
一、"概念型"例题,要突出本质属性
概念是客观事物的本质属性在人们头脑中的反映,数学概念的教学既是数学教学的重要环节,又是数学学习的核心,是学生思考问题、推理证明的依据。要建立一个新概念,教材中往往总要先举几个典型的例题,然后经过科学的抽象总结建立概念。
例如,初一学生初次接触正负数的概念,教学时我们可先向学生提供一些相反意义的例题(如"气温的零上、零下","仓库的进出","存款、贷款","向东、向西"等。),然后抓住这些实例的本质特征真正引出正负数的概念,这样学生就从一个感性认识自然地过渡到理性认识,使他们既容易接受又容易理解了。因此,对于建立概念的例题,我们必须抓住例子的实质特征,突出概念的本质,讲清概念的形式,抽象出数学概念。
二、"基础型"例题,要紧扣定理、法则
要学好数学,只有在学好基础知识的前提下,才能切实地运用它来解决其他有关问题,但学生对新学的基础知识印象不深,理解不透,运用不灵,这是学生普遍存在的现象,那么教师就必须通过一些基本例题的教学,切实加强基础知识的理解和巩固。
例如,当讲过定理(几何第二册P227):"平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似"后,我们接下去可补充举出一个典型例题,从而使学生对这个定理得到理解和巩固。
因此,在基础知识的教学中,我们教师在讲清基础知识的同时,必须设计若干巩固基础知识的例题(如判断题、填空题、口答题),对例题分析引导时,要紧扣定义、定理、法则、公式,并善于指出学生容易犯错误的地方,再通过一定量的练习、作业,使学生最终自行掌握基础知识。当然在"基础型"例题教学中,所举的例题不能过多、过杂、过难,必须要有一定的基础性和代表性,这样教师留有余地让学生在掌握基础知识的前提下去开拓、创新其他思维问题。
三、"技巧型"例题,要培养巧妙解题
一般的数学题有一套常规解题方法,但有的数学题按照常规的解法往往很复杂,甚至无法解出,这时我们应根据题目的特点,从整体上分析,善于从解题技巧上启发引导。
由于技巧型题目解法比较特殊,不易为学生发现,加上课本上这类例题出现不是很多,因此我们教师可选少量技巧型例题进行教学,对激发学生学习兴趣,培养学生创造性思维是很有好处的。在现行的新教材课本中出现的"B组习题,想一想,读一读,做一做"其实就包含很多的技巧型例题,这在很大程度上开发了学生的智力,也符合当今的"启发式"新教法。
四、"规律型"例题,要注意归纳综合
为了使学生在解题时有较敏锐的观察能力和较丰富的联想能力,举一反三,触类旁通,提高解题能力,"规律型"的题目正是考察学生以上这些能力。由于"规律型"题目的规律性和普通性,我们教师在举这样的例题应注意归纳综合,俗语说:"换汤不换药,万变不离其宗"。这话用在数学上正好反映数学知识的规律性。
例如,二次函数中有这样一类题目,给出抛物线(ɑ≠0)中ɑ、b、c的符号,要求判断抛物线的开口方向,抛物线与轴交点的位置,对称轴在轴的左侧还是右侧,抛物线与χ轴有无交点,并画出草图,象这样的问题,要先归纳综合它的规律性,规律型例题是培养学生能力的一座桥梁,我们在规律型例题教学中,必须善于采用比较、分析、归纳、综合的方法,揭示其解题规律,这就等于交给了学生解决问题的钥匙,从而使学生能够自己去解决新问题。
五、"综合型"例题,要寻求知识联系
综合型题目是考察学生对所教过知识的掌握情况、熟练程度、概括能力,以及是否较全面了解知识的内在联系等。特别在数学的章节复习和初三数学总复习中综合型例题教学更是了解学生的综合解题能力。又由于综合题往往知识覆盖面广,联系较复杂,因此,教学时我们一定要有针对性地选好题型,利用知识的内在联系,引导学生寻求解决问题的关键,分析综合题时一般可将大题分解成若干小题,然后逐步探索各小题的知识联系,引出一个知识纽带。
六、"开放型"例题,要立足现实生活
教学要面向社会,面向生活,面向实践,数学中的知识与自然现象、人类生活密切相关。近几年来,各地中考出现了许多立意新颖的开放性较强的数学试题,如:经济类问题、投资类问题、动态类问题、方案设计类问题、说理类问题、讨论类问题等,它们大都跟我们现实生活联系在一起。这类试题的出现在客观上培养和发展学生的创新意识和创新能力,考查学生的发散思维能力和了解学生应用数学知识解决实际问题的能力,使學生真正感觉数学知识在现实生活中的重要性,也激发了学生学习数学的兴趣。
由于诸上原因,"开放型"立足生活实践的例题教学显得突出重要,因此,我们教师应多联系现实生活各方面知识应用于教学中,使学生在未走上社会之前就能了解各方面知识,解决各类问题,为今后投身社会建设打下基础。"开放性"例题教学应重在学生相互讨论,允许学生提出疑问,使他们善于发现问题,激发灵感。
例如,某单位计划十月份组织员工到H地旅游,人数估计在10~25人之间,甲、乙两旅行社的服务质量相同,且组织到H地旅游的价格都是每人200元,该单位联系时,甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可免去一位游客的旅游费用,其余旅客八折优惠,问该单位应怎样选择,使其支付的旅游总费用较少?
本题是经济类讨论问题,可让学生相互讨论,经过讨论发现本题是利用方程、函数、不等式知识互相渗透来解决这个问题,可设该单位到H地旅游人数为X,选择甲旅行社所需费用为y1元,选择乙旅行社所需费用为y2,然后写出y1、y2关于x的两个函数关系式,再经过三种讨论①y1=y2,②y1>y2,③y1。
总而言之,数学题型千变万化,教师所选的例题题型也应随之变化多端。形势要求我们数学教师要有多样化、多类型、多创新的课堂例题教学,使初中素质教育的教学方法从一个高峰走向另一个高峰。
例题教学是课堂教学中的一个重要环节,俗语说:"鱼儿离不开水",同样数学离不开例题教学。切实加强各类型例题的教学,对于学生理解和掌握基础知识,培养能力,发展智力,训练思维是至关重要的。
一、"概念型"例题,要突出本质属性
概念是客观事物的本质属性在人们头脑中的反映,数学概念的教学既是数学教学的重要环节,又是数学学习的核心,是学生思考问题、推理证明的依据。要建立一个新概念,教材中往往总要先举几个典型的例题,然后经过科学的抽象总结建立概念。
例如,初一学生初次接触正负数的概念,教学时我们可先向学生提供一些相反意义的例题(如"气温的零上、零下","仓库的进出","存款、贷款","向东、向西"等。),然后抓住这些实例的本质特征真正引出正负数的概念,这样学生就从一个感性认识自然地过渡到理性认识,使他们既容易接受又容易理解了。因此,对于建立概念的例题,我们必须抓住例子的实质特征,突出概念的本质,讲清概念的形式,抽象出数学概念。
二、"基础型"例题,要紧扣定理、法则
要学好数学,只有在学好基础知识的前提下,才能切实地运用它来解决其他有关问题,但学生对新学的基础知识印象不深,理解不透,运用不灵,这是学生普遍存在的现象,那么教师就必须通过一些基本例题的教学,切实加强基础知识的理解和巩固。
例如,当讲过定理(几何第二册P227):"平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似"后,我们接下去可补充举出一个典型例题,从而使学生对这个定理得到理解和巩固。
因此,在基础知识的教学中,我们教师在讲清基础知识的同时,必须设计若干巩固基础知识的例题(如判断题、填空题、口答题),对例题分析引导时,要紧扣定义、定理、法则、公式,并善于指出学生容易犯错误的地方,再通过一定量的练习、作业,使学生最终自行掌握基础知识。当然在"基础型"例题教学中,所举的例题不能过多、过杂、过难,必须要有一定的基础性和代表性,这样教师留有余地让学生在掌握基础知识的前提下去开拓、创新其他思维问题。
三、"技巧型"例题,要培养巧妙解题
一般的数学题有一套常规解题方法,但有的数学题按照常规的解法往往很复杂,甚至无法解出,这时我们应根据题目的特点,从整体上分析,善于从解题技巧上启发引导。
由于技巧型题目解法比较特殊,不易为学生发现,加上课本上这类例题出现不是很多,因此我们教师可选少量技巧型例题进行教学,对激发学生学习兴趣,培养学生创造性思维是很有好处的。在现行的新教材课本中出现的"B组习题,想一想,读一读,做一做"其实就包含很多的技巧型例题,这在很大程度上开发了学生的智力,也符合当今的"启发式"新教法。
四、"规律型"例题,要注意归纳综合
为了使学生在解题时有较敏锐的观察能力和较丰富的联想能力,举一反三,触类旁通,提高解题能力,"规律型"的题目正是考察学生以上这些能力。由于"规律型"题目的规律性和普通性,我们教师在举这样的例题应注意归纳综合,俗语说:"换汤不换药,万变不离其宗"。这话用在数学上正好反映数学知识的规律性。
例如,二次函数中有这样一类题目,给出抛物线(ɑ≠0)中ɑ、b、c的符号,要求判断抛物线的开口方向,抛物线与轴交点的位置,对称轴在轴的左侧还是右侧,抛物线与χ轴有无交点,并画出草图,象这样的问题,要先归纳综合它的规律性,规律型例题是培养学生能力的一座桥梁,我们在规律型例题教学中,必须善于采用比较、分析、归纳、综合的方法,揭示其解题规律,这就等于交给了学生解决问题的钥匙,从而使学生能够自己去解决新问题。
五、"综合型"例题,要寻求知识联系
综合型题目是考察学生对所教过知识的掌握情况、熟练程度、概括能力,以及是否较全面了解知识的内在联系等。特别在数学的章节复习和初三数学总复习中综合型例题教学更是了解学生的综合解题能力。又由于综合题往往知识覆盖面广,联系较复杂,因此,教学时我们一定要有针对性地选好题型,利用知识的内在联系,引导学生寻求解决问题的关键,分析综合题时一般可将大题分解成若干小题,然后逐步探索各小题的知识联系,引出一个知识纽带。
六、"开放型"例题,要立足现实生活
教学要面向社会,面向生活,面向实践,数学中的知识与自然现象、人类生活密切相关。近几年来,各地中考出现了许多立意新颖的开放性较强的数学试题,如:经济类问题、投资类问题、动态类问题、方案设计类问题、说理类问题、讨论类问题等,它们大都跟我们现实生活联系在一起。这类试题的出现在客观上培养和发展学生的创新意识和创新能力,考查学生的发散思维能力和了解学生应用数学知识解决实际问题的能力,使學生真正感觉数学知识在现实生活中的重要性,也激发了学生学习数学的兴趣。
由于诸上原因,"开放型"立足生活实践的例题教学显得突出重要,因此,我们教师应多联系现实生活各方面知识应用于教学中,使学生在未走上社会之前就能了解各方面知识,解决各类问题,为今后投身社会建设打下基础。"开放性"例题教学应重在学生相互讨论,允许学生提出疑问,使他们善于发现问题,激发灵感。
例如,某单位计划十月份组织员工到H地旅游,人数估计在10~25人之间,甲、乙两旅行社的服务质量相同,且组织到H地旅游的价格都是每人200元,该单位联系时,甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可免去一位游客的旅游费用,其余旅客八折优惠,问该单位应怎样选择,使其支付的旅游总费用较少?
本题是经济类讨论问题,可让学生相互讨论,经过讨论发现本题是利用方程、函数、不等式知识互相渗透来解决这个问题,可设该单位到H地旅游人数为X,选择甲旅行社所需费用为y1元,选择乙旅行社所需费用为y2,然后写出y1、y2关于x的两个函数关系式,再经过三种讨论①y1=y2,②y1>y2,③y1。
总而言之,数学题型千变万化,教师所选的例题题型也应随之变化多端。形势要求我们数学教师要有多样化、多类型、多创新的课堂例题教学,使初中素质教育的教学方法从一个高峰走向另一个高峰。