论文部分内容阅读
新课程下数学教学有了新的方向,传统的重教师,重教材轻学生的时代已经开始转变,学生的主体地位在不断的上升。在课堂教学中如何利用有限的时间来 激发学生的创造性的思维。从“学会”到“会学”的能力转化,是我们努力的新目标。而我们该如何去创设创造性课堂呢?
一、以生为本的课堂教学理念
传统的教学过程中往往是知识分割,分科明显,造成教学过程中知识点的迁移比较生硬,不太连贯,教师经常是以填鸭式的形式对知识进行总结,这必会破坏整体的结构,就需要去解放我们的教学理念,教师在上课前应重新定位自己的身份,审视了解学生的原有知识、兴趣、需求以及可能出现的问题等情况。发现学生会怎么学,会怎样去学,通过预想设置学习提纲,引导学生自主性,探究性的学习。比如我们在讲《数学归纳法》这一课的时候,可以先了解学生对归纳法的认识,预想下学生在探究的过程中会遇到什么困难,回顾以前学生中容易出现哪些问题,比如对N与N+1的关系的认知程度和掌握程度如何,从而制定新的学习提纲。又如我们在讲立体几何的内容时,部分同学会感觉不知如何处理,感到害怕,入门难,那么在课前我们就需要对书本的内容进行重新梳理,了解学生的认知程度,如直线与平面垂直的判定(一)中借助什么去感知?怎样操作才能归纳出判定定理?确认到什么程度,才能在不对定理进行证明的情况下,不失数学的逻辑性和严谨性等等,一切从学生角度出发,在遇到困难的过程中学生先让他们自行解决,教师适时点拨。
二.以生为本的课堂教学模式
波利亚曾指出:“数学有两个侧面,一方面它是欧几里德式的严谨的科学,从这个方面看,数学像是一门系统的演绎科学;但另一方面,创造过程中的数学,看上去却像一门实验性的归纳科学.”打造有效的创造性课堂就是一门归纳科学,那就需要我们设置有效的问题,问题要做到真实性,有依可循,问题探究的引入要自然,符合学生的认知结构,多给学生一些思考的空间并鼓励学生展开讨论、辩论,发表各自不同的见解,把课堂交给学生,教师帮助学生分析和解答在学习过程中存在的疑难问题;纠正学生的一些错误理解和认识;适当补充一些新的教学内容或学生需要的、感兴趣的知识等。把握好度,防止教师的“不作为”和“过度作为”。如《数学归纳法》这一课,教师需要课前准备几个材料,比如1,明朝刘元卿编的《应谐录》中有一个笑话:财主的儿子学写字.这则笑话中财主的儿子得出“四就是四横、五就是五横……”的结论。,2.有一位师傅想考考他的两个徒弟,看谁更聪明一些.他给每人筐花生去剥皮,看看每一粒花生仁是不是都有粉衣包着,看谁先给出答案.大徒弟费了很大劲将花生全部剥完了;二徒弟只拣了几个饱满的,几个干瘪的,几个熟好的,几个没熟的,几个三仁的,几个一仁、两仁的,总共不过一把花生.谁更聪明?这个时候可以给出问题,如这两个材料有什么共同的特征?那么你认为什么是归纳法?归纳法的结论是否都是正确的?那么什么样的归纳法才是有效的?这个时候给出数列中一些通项公式的求法,比如已知=(n∈N),
(1)分别求:;;;.
(2)由此你能得到一个什么结论?这个结论正确吗?培养学生大胆猜想的意识和数学概括能力.概括能力是思维能力的核心.鲁宾斯坦指出:思维都是在概括中完成的,心理学认为“迁移就是概括”,这里就是知识、技能、思维方法、数学原理的迁移,通过讨论、探讨、辨析中得到结论。那么该如何去验证结论是否成立,这个时候可以给学生播放一段多米诺骨牌的视频,看了这个视频后问学生你有什么感想?这里可能学生答案千奇百怪,教师适时引导,再问如果第7块骨牌会倒下,那必须要具备什么条件呢?那如果要让所以的骨牌都倒下那又需要具备什么条件呢?你能否举几个生活中的实例呢?比如自行车推倒情况,做操排队对齐等等。这个时候你能仿照这些例子,给出数学归纳法的一般过程吗?比如证明等差数列的通项公式,教师在这个过程中有指导性的发现问题让学生给出证明过程的雏形,是对多米诺骨牌原来的一种数学再创造。最后教师和学生一起理论升华。学生的主体性得到了充分发挥,能激发他们对数学探究的兴趣,以生为主,在短短40分钟内给他更大的空间去进行创造与再创造,
三、以生为本的课后指导
创造性课堂的设立是让学生去自学、去尝试、去探究、去发现、去解决。课后同样还是需要學生对知识进行再创造,比如作业的布置上可以给学生自主选择,按照自己的学习能力选择相应的题型,可以是自己尝试一些难题的攻克,或者是疑难问题的再思考以及自己学习中的误区反馈和思考,或者是课后题目与书本题目的简单改编,教师逐批进行点拨引导,达到知识的升华。另外特别是一些“陷阱”题,自己尝试去发现错误并解决,能够走出思维定式的误区,达到举一反三的效果,不失为创造性课堂达到的另一效果。
总之,师者,传道授业解惑也,在课堂中学生动脑、动口、动手进行自学与尝试,逐步实现记忆——理解——运用——分析——评价——创造的新的教育目标。是创造性课堂的创设的宗旨,当然这个过程的实现必须使得所有的教学活动都要以学生的可持续发展为根本出发点,以学生在知识、能力和情感的提高和进步为根本出发点。
一、以生为本的课堂教学理念
传统的教学过程中往往是知识分割,分科明显,造成教学过程中知识点的迁移比较生硬,不太连贯,教师经常是以填鸭式的形式对知识进行总结,这必会破坏整体的结构,就需要去解放我们的教学理念,教师在上课前应重新定位自己的身份,审视了解学生的原有知识、兴趣、需求以及可能出现的问题等情况。发现学生会怎么学,会怎样去学,通过预想设置学习提纲,引导学生自主性,探究性的学习。比如我们在讲《数学归纳法》这一课的时候,可以先了解学生对归纳法的认识,预想下学生在探究的过程中会遇到什么困难,回顾以前学生中容易出现哪些问题,比如对N与N+1的关系的认知程度和掌握程度如何,从而制定新的学习提纲。又如我们在讲立体几何的内容时,部分同学会感觉不知如何处理,感到害怕,入门难,那么在课前我们就需要对书本的内容进行重新梳理,了解学生的认知程度,如直线与平面垂直的判定(一)中借助什么去感知?怎样操作才能归纳出判定定理?确认到什么程度,才能在不对定理进行证明的情况下,不失数学的逻辑性和严谨性等等,一切从学生角度出发,在遇到困难的过程中学生先让他们自行解决,教师适时点拨。
二.以生为本的课堂教学模式
波利亚曾指出:“数学有两个侧面,一方面它是欧几里德式的严谨的科学,从这个方面看,数学像是一门系统的演绎科学;但另一方面,创造过程中的数学,看上去却像一门实验性的归纳科学.”打造有效的创造性课堂就是一门归纳科学,那就需要我们设置有效的问题,问题要做到真实性,有依可循,问题探究的引入要自然,符合学生的认知结构,多给学生一些思考的空间并鼓励学生展开讨论、辩论,发表各自不同的见解,把课堂交给学生,教师帮助学生分析和解答在学习过程中存在的疑难问题;纠正学生的一些错误理解和认识;适当补充一些新的教学内容或学生需要的、感兴趣的知识等。把握好度,防止教师的“不作为”和“过度作为”。如《数学归纳法》这一课,教师需要课前准备几个材料,比如1,明朝刘元卿编的《应谐录》中有一个笑话:财主的儿子学写字.这则笑话中财主的儿子得出“四就是四横、五就是五横……”的结论。,2.有一位师傅想考考他的两个徒弟,看谁更聪明一些.他给每人筐花生去剥皮,看看每一粒花生仁是不是都有粉衣包着,看谁先给出答案.大徒弟费了很大劲将花生全部剥完了;二徒弟只拣了几个饱满的,几个干瘪的,几个熟好的,几个没熟的,几个三仁的,几个一仁、两仁的,总共不过一把花生.谁更聪明?这个时候可以给出问题,如这两个材料有什么共同的特征?那么你认为什么是归纳法?归纳法的结论是否都是正确的?那么什么样的归纳法才是有效的?这个时候给出数列中一些通项公式的求法,比如已知=(n∈N),
(1)分别求:;;;.
(2)由此你能得到一个什么结论?这个结论正确吗?培养学生大胆猜想的意识和数学概括能力.概括能力是思维能力的核心.鲁宾斯坦指出:思维都是在概括中完成的,心理学认为“迁移就是概括”,这里就是知识、技能、思维方法、数学原理的迁移,通过讨论、探讨、辨析中得到结论。那么该如何去验证结论是否成立,这个时候可以给学生播放一段多米诺骨牌的视频,看了这个视频后问学生你有什么感想?这里可能学生答案千奇百怪,教师适时引导,再问如果第7块骨牌会倒下,那必须要具备什么条件呢?那如果要让所以的骨牌都倒下那又需要具备什么条件呢?你能否举几个生活中的实例呢?比如自行车推倒情况,做操排队对齐等等。这个时候你能仿照这些例子,给出数学归纳法的一般过程吗?比如证明等差数列的通项公式,教师在这个过程中有指导性的发现问题让学生给出证明过程的雏形,是对多米诺骨牌原来的一种数学再创造。最后教师和学生一起理论升华。学生的主体性得到了充分发挥,能激发他们对数学探究的兴趣,以生为主,在短短40分钟内给他更大的空间去进行创造与再创造,
三、以生为本的课后指导
创造性课堂的设立是让学生去自学、去尝试、去探究、去发现、去解决。课后同样还是需要學生对知识进行再创造,比如作业的布置上可以给学生自主选择,按照自己的学习能力选择相应的题型,可以是自己尝试一些难题的攻克,或者是疑难问题的再思考以及自己学习中的误区反馈和思考,或者是课后题目与书本题目的简单改编,教师逐批进行点拨引导,达到知识的升华。另外特别是一些“陷阱”题,自己尝试去发现错误并解决,能够走出思维定式的误区,达到举一反三的效果,不失为创造性课堂达到的另一效果。
总之,师者,传道授业解惑也,在课堂中学生动脑、动口、动手进行自学与尝试,逐步实现记忆——理解——运用——分析——评价——创造的新的教育目标。是创造性课堂的创设的宗旨,当然这个过程的实现必须使得所有的教学活动都要以学生的可持续发展为根本出发点,以学生在知识、能力和情感的提高和进步为根本出发点。