论文部分内容阅读
幼儿学数学不光是为了计算和应用,更不是为了无休止的做题;学数学,是在学一种化繁为简,解决问题要有依据的数学思想,是在学一种思维方法。解决问题应是数学课程的中心,解决问题的过程就是幼儿从生活经验和客观事实出发,通过主动探索,发现数学,学习数学的过程。
一、引导幼儿通过主动探索学习数学的关键因素
人是一个能动的个体,社会的发展也强烈需要主动性、创造性的人才,因此,承担培养明日栋梁的重担的教育必须成为学生主动探索,主动学习的过程。幼儿数学教育也是如此,教师应为幼儿提供哪些利于幼儿主动探索的关键因素呢?
幼儿是主动的学习者和探索者,年龄特点决定了他们好奇、好问、好探索,有些行为不合乎成人的逻辑,但在幼儿已有经验和认知结构上却是合理的。例如:幼儿为了帮山楂树妈妈数数它到底有多少个孩子,而把未成熟的山楂摘了下来,被教师认为是破坏树木;幼儿为了探索青蛙的身高,而把青蛙抻得直直的,被教师认为是残忍……在类似情况下,教师基本看不到幼儿乐于探索的良好动机和通过探索所获得的有益经验,教师的反应是言语激烈、表情可怕,幼儿的反应是委屈、吃惊、哭泣。因此,若想创设有利于幼儿通过主动探索学习数学的精神环境,作为教师,最重要的是在幼儿探索活动中所提供的材料,能既符合幼儿兴趣需求和原有水平,又蕴含着教育目标的内容。简言之,材料的提供应是幼儿兴趣需求与教育目标和内容的有机结合。
教师为幼儿提供的材料应具有以下特征:
(一)材料符合幼儿兴趣,需求和原有水平,使幼儿对探索活动保持足够兴趣。
为了给幼儿创设良好的学习数学的环境,启发幼儿主动学习与探索,教师应根据幼儿的年龄特点,教学进度,教学目标设置多种探索材料。例如:小班分类能力的培养的活动材料就可设置按图形、大小、颜色、用途等归类的游戏材料,有趣、新颖与幼儿生活经验接近。
(二)提供的材料应该具有艺术性,丰富多样
实践证明,色彩鲜艳、干净、对比度清晰、形象可爱且具有游戏性的材料,能较好的调动幼儿主动探索的兴趣。因此,应特别强调材料的艺术性。例如:小班幼儿在体验物体空间关系时,我们制作的各种形象可爱,色彩鲜艳的小动物拼图,有小鸭、小猪、小猫等,形象贴近现实生活,逼真、生动,并穿插一些游戏情节——小动物图片被弄坏了,请小朋友帮他们拼好,激发幼儿正确地将图片摆放在不同位置,构成一个动物整体,从而充分发挥幼儿的智力潜能,使幼儿在数学探索活动中不知不觉地掌握了有关知识。
(三)提供的材料应注意体现数学活动目标
教育活动的目标是一切教育工作的出发点和最终归宿,是向幼儿进行教育的依据和准则。因此,在数学操作活动中材料的提供应从教育的目标和内容出发,充分考虑到它的教育性和科学性,把教师的教育意图和要求溶入材料之中,使幼儿在摆弄材料的过程中达成目标。例如:数学活动目标中要求小班幼儿学会按物体的某一特征进行分类。在提供操作材料时就应考虑到操作材料必须具有一个以上的特征,即形状、颜色不同的特征,才能使幼儿按照其中某一特征进行分类,达到教学目的,让幼儿在数学探索活动中实现最佳的发展。
(四)材料具有可造性,可组合性
例如:制作不同数量的动物卡片,可以在不同的数学探索活动中应用。可以用于按物点数,可以用于分类,可用于学习比较,可用于学习数的分解组成,可用于学习加减法……让幼儿自己选择材料,决定用什么材料做什么,有助于幼儿把自己看成是一个能产生思想、支配时间和材料的人,是一个行动者,是一个解决问题的人。
(五)根据幼儿兴趣和教育目标深度的递增不断扩展和增加材料
尽可能为幼儿提供蕴含着由浅入深的教育目标和内容的材料。例如:教幼儿按一维、二维、三维的特征分类的活动,插花游戏的材料是按这样的顺序投放的:
(1)根据花茎的粗细不同,投放花心大小不同的花朵;
(2)根据花茎的粗细、长短的不同,投放数量不同、花心大小不同的花朵。
(3)根据花茎的粗细、长短、颜色的不同,投放花心大小不同,数量不同及颜色不同的花朵。
这一系列活动材料所蕴含教育目标、内容,所揭示的事物之间的联系,由浅到深,由易到难。幼儿通过操作材料,使学习和探索不断走向深入,并建立起持久的学习和探索的动机。
二、扎根于幼儿生活经验,引导幼儿在主动探索中,发现数学,学习数学
幼儿需要通过探究和操作,亲身经历“研究过程”,才能真正发现和理解事物间的基本关系,因此,教师要为幼儿的研究和发现铺路搭桥,一般应创设以下几个环节:
(一)使幼儿产生疑问,引发幼儿的探索行为
幼儿真正的主动探索和学习是从有问题开始的,幼儿有了疑问和问题,并产生想寻求答案的愿望,主动探索才进入真正的准备状态。例如:《帮我学数学》第二册第二单元,“1和许多”一课为幼儿提供了这样的问题情景:一只老虎被许多只凶狠的老狼包围了!老虎怎样才能逃脱呢?教师利用这一问题情景,利用幼儿各执一词的不同观点,利用幼儿关心老虎安危的心情,让他们带着各自的问题,在这一问题情景中去寻求答案。由此,自然的生成了幼儿的研究问题,成功地将幼儿引向了对问题的探索。
(二)引导幼儿通过主动探索,发现规律,主动的学习数学
在活动中,教师应鼓励幼儿的“求异性”找出与别人不同的方法。例如学习“等分”活动中,教师可引导幼儿通过操作各种几何图形的纸,探索同一几何图形的不同等分方法,不同几何图形的不同等分方法,最后引导幼儿把各种方法介绍给大家,总结出等分的规律。再如,大班幼儿在学习数的分解组成时,通过“分两份”、“取物分两份”、“剪格纸”、“填补数”、“盖房顶”、“拼花”等多种数学操作活动,让幼儿探索、体验数的各种组成形式,从而探索出数的分解顺序规律。这类活动是探索性很强的活动,它变被动接受为主动发现,调动幼儿的探索积极性,发展了幼儿的抽象思维。
(三)教师要为幼儿搭建必要的“台阶”或“支架”,使他们在较短时间内经历探索过程,帮助幼儿取得成功,体验其中乐趣,走向成功。例如:小班幼儿对空间的感知是模糊不清的,掌握空间定向也比较困难,如果让幼儿通过亲身经历体会这些空间方位,让幼儿用外部动作逐渐内化而引起思维的积极活动,就会取得理想的效果。教师给每个幼儿一个塑料圈让幼儿在操场上玩“捉迷藏”的游戏,然后教师发出口令:“小朋友真能干,躲到圈里藏起来。”幼儿很快跳进圈里,这时教师又问:还可以怎样藏?引导幼儿想出不同的方法,如:套在脖子上;背在后背上;抱在胸前等,自然而然地学会里外、前后、上面等方位。当教师说:“小朋友真能干,躲到圆圈下面去。”幼儿被难住了,怎么才能到圈下面去呢?总不能钻到土里吧?幼儿的小脑袋积极地思考着。这时,只要教师稍加点拔幼儿就会取得成功,教师及时提醒:“圆圈在上面,人才能站在它下面,再想想应该怎么做?”幼儿明白了,他们把圆圈高高地举起来,高兴地说:“我躲到圈下面啦!”幼儿玩得开心,学得主动,不知不觉地掌握了难以理解的空间方位。
(四)鼓励并支持幼儿将获得的经验用于解决生活中的实际问题
例如:上文提到的“1和许多”的数学教育活动,当幼儿通过自己的探索终于找到正确答案时,应不失时机的向幼儿提出:“生活中如果你1个人遇到许多坏人怎么办?”将幼儿的注意力引向了将获得的经验用于解决生活中的实际问题。
一、引导幼儿通过主动探索学习数学的关键因素
人是一个能动的个体,社会的发展也强烈需要主动性、创造性的人才,因此,承担培养明日栋梁的重担的教育必须成为学生主动探索,主动学习的过程。幼儿数学教育也是如此,教师应为幼儿提供哪些利于幼儿主动探索的关键因素呢?
幼儿是主动的学习者和探索者,年龄特点决定了他们好奇、好问、好探索,有些行为不合乎成人的逻辑,但在幼儿已有经验和认知结构上却是合理的。例如:幼儿为了帮山楂树妈妈数数它到底有多少个孩子,而把未成熟的山楂摘了下来,被教师认为是破坏树木;幼儿为了探索青蛙的身高,而把青蛙抻得直直的,被教师认为是残忍……在类似情况下,教师基本看不到幼儿乐于探索的良好动机和通过探索所获得的有益经验,教师的反应是言语激烈、表情可怕,幼儿的反应是委屈、吃惊、哭泣。因此,若想创设有利于幼儿通过主动探索学习数学的精神环境,作为教师,最重要的是在幼儿探索活动中所提供的材料,能既符合幼儿兴趣需求和原有水平,又蕴含着教育目标的内容。简言之,材料的提供应是幼儿兴趣需求与教育目标和内容的有机结合。
教师为幼儿提供的材料应具有以下特征:
(一)材料符合幼儿兴趣,需求和原有水平,使幼儿对探索活动保持足够兴趣。
为了给幼儿创设良好的学习数学的环境,启发幼儿主动学习与探索,教师应根据幼儿的年龄特点,教学进度,教学目标设置多种探索材料。例如:小班分类能力的培养的活动材料就可设置按图形、大小、颜色、用途等归类的游戏材料,有趣、新颖与幼儿生活经验接近。
(二)提供的材料应该具有艺术性,丰富多样
实践证明,色彩鲜艳、干净、对比度清晰、形象可爱且具有游戏性的材料,能较好的调动幼儿主动探索的兴趣。因此,应特别强调材料的艺术性。例如:小班幼儿在体验物体空间关系时,我们制作的各种形象可爱,色彩鲜艳的小动物拼图,有小鸭、小猪、小猫等,形象贴近现实生活,逼真、生动,并穿插一些游戏情节——小动物图片被弄坏了,请小朋友帮他们拼好,激发幼儿正确地将图片摆放在不同位置,构成一个动物整体,从而充分发挥幼儿的智力潜能,使幼儿在数学探索活动中不知不觉地掌握了有关知识。
(三)提供的材料应注意体现数学活动目标
教育活动的目标是一切教育工作的出发点和最终归宿,是向幼儿进行教育的依据和准则。因此,在数学操作活动中材料的提供应从教育的目标和内容出发,充分考虑到它的教育性和科学性,把教师的教育意图和要求溶入材料之中,使幼儿在摆弄材料的过程中达成目标。例如:数学活动目标中要求小班幼儿学会按物体的某一特征进行分类。在提供操作材料时就应考虑到操作材料必须具有一个以上的特征,即形状、颜色不同的特征,才能使幼儿按照其中某一特征进行分类,达到教学目的,让幼儿在数学探索活动中实现最佳的发展。
(四)材料具有可造性,可组合性
例如:制作不同数量的动物卡片,可以在不同的数学探索活动中应用。可以用于按物点数,可以用于分类,可用于学习比较,可用于学习数的分解组成,可用于学习加减法……让幼儿自己选择材料,决定用什么材料做什么,有助于幼儿把自己看成是一个能产生思想、支配时间和材料的人,是一个行动者,是一个解决问题的人。
(五)根据幼儿兴趣和教育目标深度的递增不断扩展和增加材料
尽可能为幼儿提供蕴含着由浅入深的教育目标和内容的材料。例如:教幼儿按一维、二维、三维的特征分类的活动,插花游戏的材料是按这样的顺序投放的:
(1)根据花茎的粗细不同,投放花心大小不同的花朵;
(2)根据花茎的粗细、长短的不同,投放数量不同、花心大小不同的花朵。
(3)根据花茎的粗细、长短、颜色的不同,投放花心大小不同,数量不同及颜色不同的花朵。
这一系列活动材料所蕴含教育目标、内容,所揭示的事物之间的联系,由浅到深,由易到难。幼儿通过操作材料,使学习和探索不断走向深入,并建立起持久的学习和探索的动机。
二、扎根于幼儿生活经验,引导幼儿在主动探索中,发现数学,学习数学
幼儿需要通过探究和操作,亲身经历“研究过程”,才能真正发现和理解事物间的基本关系,因此,教师要为幼儿的研究和发现铺路搭桥,一般应创设以下几个环节:
(一)使幼儿产生疑问,引发幼儿的探索行为
幼儿真正的主动探索和学习是从有问题开始的,幼儿有了疑问和问题,并产生想寻求答案的愿望,主动探索才进入真正的准备状态。例如:《帮我学数学》第二册第二单元,“1和许多”一课为幼儿提供了这样的问题情景:一只老虎被许多只凶狠的老狼包围了!老虎怎样才能逃脱呢?教师利用这一问题情景,利用幼儿各执一词的不同观点,利用幼儿关心老虎安危的心情,让他们带着各自的问题,在这一问题情景中去寻求答案。由此,自然的生成了幼儿的研究问题,成功地将幼儿引向了对问题的探索。
(二)引导幼儿通过主动探索,发现规律,主动的学习数学
在活动中,教师应鼓励幼儿的“求异性”找出与别人不同的方法。例如学习“等分”活动中,教师可引导幼儿通过操作各种几何图形的纸,探索同一几何图形的不同等分方法,不同几何图形的不同等分方法,最后引导幼儿把各种方法介绍给大家,总结出等分的规律。再如,大班幼儿在学习数的分解组成时,通过“分两份”、“取物分两份”、“剪格纸”、“填补数”、“盖房顶”、“拼花”等多种数学操作活动,让幼儿探索、体验数的各种组成形式,从而探索出数的分解顺序规律。这类活动是探索性很强的活动,它变被动接受为主动发现,调动幼儿的探索积极性,发展了幼儿的抽象思维。
(三)教师要为幼儿搭建必要的“台阶”或“支架”,使他们在较短时间内经历探索过程,帮助幼儿取得成功,体验其中乐趣,走向成功。例如:小班幼儿对空间的感知是模糊不清的,掌握空间定向也比较困难,如果让幼儿通过亲身经历体会这些空间方位,让幼儿用外部动作逐渐内化而引起思维的积极活动,就会取得理想的效果。教师给每个幼儿一个塑料圈让幼儿在操场上玩“捉迷藏”的游戏,然后教师发出口令:“小朋友真能干,躲到圈里藏起来。”幼儿很快跳进圈里,这时教师又问:还可以怎样藏?引导幼儿想出不同的方法,如:套在脖子上;背在后背上;抱在胸前等,自然而然地学会里外、前后、上面等方位。当教师说:“小朋友真能干,躲到圆圈下面去。”幼儿被难住了,怎么才能到圈下面去呢?总不能钻到土里吧?幼儿的小脑袋积极地思考着。这时,只要教师稍加点拔幼儿就会取得成功,教师及时提醒:“圆圈在上面,人才能站在它下面,再想想应该怎么做?”幼儿明白了,他们把圆圈高高地举起来,高兴地说:“我躲到圈下面啦!”幼儿玩得开心,学得主动,不知不觉地掌握了难以理解的空间方位。
(四)鼓励并支持幼儿将获得的经验用于解决生活中的实际问题
例如:上文提到的“1和许多”的数学教育活动,当幼儿通过自己的探索终于找到正确答案时,应不失时机的向幼儿提出:“生活中如果你1个人遇到许多坏人怎么办?”将幼儿的注意力引向了将获得的经验用于解决生活中的实际问题。