论文部分内容阅读
提出基于小波变换和支持向量机的水质预测模型。该模型运用小波变换得到水质时间序列在不同尺度下的变化特性,并用改进后的粒子群算法优化回归支持向量机的三个参数,提高了模型预测精度。运用该模型对王江泾自动监测站测得的溶解氧浓度进行了1步预测及2步预测,10组测试样本最高MAPE为4.54%,并用基于BP神经网络的预测结果进行了比较。结果表明,该模型性能良好、预测精度高、简便易行,比基于BP神经网络的模型具有更好的预测效果,为水质预测提供了一种有效的方法。