论文部分内容阅读
针对现有立体匹配算法对噪声敏感、匹配率低的问题,提出了一种基于Spearman相关性系数与多尺度框架融合的立体匹配算法。在代价计算阶段,创新性地在固定窗口内通过简化Spearman相关性系数得到两种代价计算模型。在代价聚合阶段,利用多尺度框架在图像金字塔上进行代价聚合,从而使得匹配算法在低纹理区域得到较高的匹配率。实验结果表明,提出的立体匹配算法有效降低了误匹配率:对Middletury2.0测试集中31对标准图像对的平均误匹配率仅为7.98%,Middletury3.0中的15对标准图像对的平均误