线性规划题变迁的三个着眼点

来源 :数理化学习·高一二版 | 被引量 : 0次 | 上传用户:dianzishu1981
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  线性规划问题是数学应用的重要内容之一,其问题本身以及解决问题的方法促进了许多数学分支的发展.这方面的高考试题的设问方式也由最初的求线性目标函数的最值转变为求与其知识相关的问题,试题所提供的背景也越来越新颖,越来越巧妙.其基本思路是画出满足约束条件的点的范围,也就是可行域;研究目标函数的几何意义,找到目标函数最值的位置,求出最值.然而,此类问题的演变,从目标函数的几何意义上作文章和研究“可行域”的变化,也延伸到知识的交汇处.本文就线性规划考题在这几方面的设计作一点归纳,供参考.
  一、寻找目标函数,挖掘其几何意义
  在高考中对线性规划问题的常规考查,主要设计在寻找目标函数的几何意义,其常见形式有纵截距、圆、投影、斜率、坐标、面积、函数等最值问题.下面一道题展示目标函数的几何意义.
其他文献
面对机遇和挑战并存的局面,国内各家商业银行在金融服务的道路上都已经起步,逐渐转变观念,努力摆脱计划经济体制下养成的骄气和惰性,把银行工作的重点转向了客户、转向了市场。工
数形结合思想是中国古代数学四大数学思想之一,它体现的不仅是简单的一种解题思路,而是代表了一个时期数学发展的最高成果;经过了几代数学家的努力,这种思想和教学原则已经广泛运用于中学数学的教学当中.本文先讲述了数形结合的内涵和重要性,接着从“以数解形”和“以形助数”两个方面利用具体题目探讨其在高中数学教学中的具体应用.  一、数形结合的内涵和重要性  数字与图形,作为高中数学中两个重要的信息载体,代表的
函数在函数乃至整个高中数学中都占有重要的地位,也是高考必考的重点内容之一.三角换元思想是三角函数中的一个基本思想.本文主要研究三角换元思想的应用.  一、处理在圆及椭圆中取值范围问题  例1如果实数x、y满足(x-2)2+y2=3,那么x+y的最大值是.  解析:由题意x,y满足方程:x=2+3cosθ  y=3sinθ  则x+y=2+3cosθ+3sinθ  =6(22cosθ+22sinθ)
投资与现金流敏感性的研究是当前财务理论的一个热点,近三十年来,国外学者在这一领域进行了大量的研究,提出了融资约束假说和自由现金流代理成本假说来解释这一现象。在我国,
张同语新课标教材数学4北师大版98页有这样一道题,如图所示,已知Ax1,y1,B(x2,y2),试求以AB为直径的圆的方程.  利用平面向量数量积知识容易求得以AB为直径的圆的方程为x-x1x-x2+y-y1y-y2=0(1).这道题给出了圆的方程的又一种形式,一般称之为圆的两点式方程,该方程形式简明,富有美感,容易记忆.本文从以下几个方面挖掘其潜在的应用价值.  一、方程的直接应用  例1已知抛
冶金部第三冶金建设公司党委和公司决定,加强对干部的效绩考核。在坚持以革命化为前提的德才兼备标准的基础上,把完成生产经营任务情况作为考核的重要内容之一,并做以下几点
两点间距离公式,点到直线间距离公式有着广泛的应用,可能因为其形式的“变脸”,使人们不易认清它们,结果导致解题思路受阻,一旦认清距离公式的“变脸”,问题就迎韧而解,下面举例说明.  一、解方程  例1解方程x2-4x+5+x2+1=22.  分析:配方使等式左边可作为两点间距离.  解:原方程配方得(x-2)2+1+x2+1=22,可作为x轴上一点P(x,0)到两定点A(2,1),B(0,-1)的距
数列是高中数学的重要内容,其涉及的基础知识、数学思想方法、在高等数学中的学习中起着重要作用,因而成为历年高考久考不衰的内容.下面通过实例介绍评析几例,供读者参考.  一、等差数列性质在解题中的应用  由于等差数列运算的灵活性与技巧性较强,因此要学会借用等差数列的性质解题,以达到选择捷径,避繁就简,合理解题的目的.  例1若{an}为等差数列,首项a1>0,a2007+a2008>0,a2007·a
笔者多次听到不少数学老师、教研员说2012年高考北京卷文科、理科第14题都很难,下面给出这两道高考题的简洁自然解法.  高考题1(2012年北京文)已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2.若x∈R,f(x)0,也不满足题意.所以,m-4.  所以-42m,得m-m-3即-12m,所以-1-m-3,所以-2
目的 探讨母亲DM诱发胎儿神经管畸形(NTDs)的组蛋白乙酰化修饰机制.方法 构建高糖处理小鼠神经干细胞(NE?4C)模型、T1DM雌鼠诱发NTDs胎鼠模型及人类母亲高血糖相关NTDs胚胎脑