The distribution and variation in the gas composition of macro-seeps on the near-shore Lingtou Promo

来源 :Acta Oceanologica Sinica | 被引量 : 0次 | 上传用户:CL87781891
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Natural hydrocarbon seeps in a marine environment are one of the important contributors to greenhouse gases in the atmosphere,including methane,which is significant to the global carbon cycling and climate change.Four hydrocarbon seep areas,the Lingtou Promontory,the Yinggehai Rivulet mouth,the Yazhou Bay and the Nanshan Promontory,occurring in the Yinggehai Basin delineate a near-shore gas bubble zone.The gas composition and geochemistry of venting bubbles and the spatial distribution of hydrocarbon seeps are surveyed on the near-shore Lingtou Promontory.The gas composition of the venting bubbles is mainly composed of CO_2,CH_4,N_2 and O_2,with minor amounts of non-methane hydrocarbons.The difference in the bubbles’ composition is a possible consequence of gas exchange during bubble ascent.The seepage gases from the seafloor are characterized by a high CO_2 content(67.35%) and relatively positive δ~(13)C_(V_PDB) values(-0.49×10~(-3)-0.86×10~(-3)),indicating that the CO_2 is of inorganic origin.The relatively low CH_4 content(23%) and their negative δ~(13)C_(V-PDB) values(-34.43×10~(-3)--37.53×10~(-3)) and high ratios of C_1 content to C_(1-5) one(0.98-0.99)as well point to thermogenic gases.The hydrocarbon seeps on the 3.5 Hz sub-bottom profile display a linear arrangement and are sub-parallel to the No.1 fault,suggesting that the hydrocarbon seeps may be associated with fracture activity or weak zones and that the seepage gases migrate laterally from the central depression of the Yinggehai Basin. Natural hydrocarbon seeps in a marine environment are one of the important contributors to greenhouse gases in the atmosphere, including methane, which is significant to the global carbon cycling and climate change. Flow hydrocarbon seep areas, the Lingtou Promontory, the Yinggehai Rivulet mouth, the Yazhou Bay and the Nanshan Promontory, occurring in the Yinggehai Basin delineate a near-shore gas bubble zone. The gas composition and geochemistry of venting bubbles and the spatial distribution of hydrocarbon seeps are surveyed on the near-shore Lingtou Promontory. The gas composition of the venting bubbles are mainly composed of CO_2, CH_4, N_2 and O_2, with minor amounts of non-methane hydrocarbons. The difference in the bubbles’ composition is a possible consequence of gas exchange during bubble ascent. The seepage gases from the seafloor are characterized by a high CO 2 content (67.35%) and relatively positive δ ~ (13) C_ (V_PDB) values ​​(-0.49 × 10 -3 -0.86 × 10 -3) (-34.43 × 10 -3 - 37.53 × 10 -3) and high ratios of C_1 content to C_ (1-5) one (0.98-0.99) as well point to thermogenic gases. The hydrocarbon seeps on the 3.5 Hz sub-bottom profile display a linear arrangement and are sub-parallel to the No. 1 fault , suggesting that the hydrocarbon seeps may be associated with fracture activity or weak zones and that the seepage gases migrate laterally from the central depression of the Yinggehai Basin.
其他文献
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
In this paper, the interdecadal variability of upper-ocean temperature in the South China Sea(SCS) is investigated based on several objectively analyzed data se
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
On the basis of the CTD data obtained within the Bering Sea shelf by the Second to Sixth Chinese National Arctic Research Expedition in the summers of 2003, 200
The numerous factors influencing the air-sea carbon dioxide(CO_2) transfer velocity have been discussed for many years, yet the contributions of various factors
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
A summer-time shipboard meteorological survey is described in the Northwest Indian Ocean. Shipboard observations are used to evaluate a satellite-based sea surf
By introducing a wave-induced component and a spray-induced component to the total stress, a mathematical model based on the Ekman theory is proposed to detail