论文部分内容阅读
We propose a novel molecular junction with single-walled carbon nanotubes as electrodes bridged by a benzene molecule, in which the electrodes are saturated by different terminations (C-, H- and N-). It is found that the different terminations at the carbon nanotube ends strongly affect the electronic transport properties of the junction. The current-voltage (I-V) curve of the N-terminated carbon nanotube junction shows a more striking nonlinear feature than that of the C- and H-terminated junctions at small bias. Moreover, the negative differential resistance behaviors can be observed significantly in the N-terminated carbon nanotube junction, whereas not in the other two cases.
We propose a novel molecular junction with single-walled carbon nanotubes as electrodes bridged by a benzene molecule, in which the electrodes are saturated by different terminations (C-, H- and N-). It is found that the different terminations at the carbon nanotube ends strongly affect the electronic transport properties of the junction. The current-voltage (IV) curve of the N-terminated carbon nanotube junction shows a more striking nonlinear feature than that of the C- and H-terminated junctions at small bias. , the negative differential resistance behaviors can be observed significantly in the N-terminated carbon nanotube junction, not not in the other two cases.