金包银复合键合丝的组织演变及变形行为

来源 :稀有金属材料与工程 | 被引量 : 0次 | 上传用户:pjpdl6123475
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
采用金相显微镜、双束离子显微镜、高低温拉力仪及纳米压痕仪对不同真应变条件的金包银复合键合丝的组织和力学性能进行表征,研究了金包银复合键合丝的组织结构演变、力学性能及变形行为特点.结果表明:金包银复合键合丝的银合金芯材沿着拉伸方向从胞状树枝晶演变为纤维组织,靠近界面的过渡层始终保持细小的等轴晶或球状晶粒,金包覆层在变形过程中均匀连续.各组分在变形过程中尺寸变化不一致,拟合后的尺寸变化常数与试样直径的变化不成正比.显微硬度、抗拉强度、延伸率均随着变形量的增加而增大.在单轴拉伸过程中,金包银复合键合丝组分之间相互制约,使单向拉应变变为复杂的二维应力状态,交替变化的应力状态可抑制裂纹的形核,提高材料的塑性和韧性.“,”The microstructure and mechanical property of gold cladding silver composite bonding wire under different true strains were characterized by metallographic microscope,double beam electron microscope,high-low temperature tensile tester and nano-indentor.The results show that the silver alloy core of gold cladding silver composite bonding wire evolves from cellular dendrite to fiber structure along the drawing direction.The gold cladding layer is uniform and continuous and the transition layer near the interface always keeps fine equiaxed or spherical grains during the deformation process.Inconsistent size change among each component is observed during deformation,and the fitted size change constant is not proportional to the change of wire diameter.Microhardness,tensile strength and elongation increase with the increase of deformation amount.During the uniaxial drawing process,the unidirectional tensile strain becomes a complex two-dimensional stress state due to the interaction between each component of the composite wire.Thus the plasticity and toughness of the material can be improved because the alternating stress inhibits the nucleation of crack.
其他文献
提出了一种简化的、能指导复合式能量采集器中磁致伸缩发电效应、电磁发电效应的最优性能输出的理论模型.在模型的建立过程中,首先研究了应力和磁场对Tb0.3DY07Fe2合金压磁效应的影响,讨论了单独应力和单独磁场作用下磁致伸缩材料内磁通密度的变化特性;其次,提出了基于预加载荷方法和基于冲击应力方法的理论模型思路,并分别探讨了2种模型建立方法在复合式能量采集器设计中最大压磁系数获取的准则;最后,完成了能量采集器的大压磁系数获取方法的可靠性试验,实验结果与理论设计的结果吻合较好.该模型能够快速、准确地获得不同应用
研究了2种不同Co含量的镍基高温合金分别在650℃/630MPa,725℃/630MPa和760℃/630MPa条件下的蠕变变形组织.通过透射电镜分析了温度和层错能对蠕变变形机制的影响.结果表明,对于所选取的高温合金来说,温度的提升可以有效促使蠕变变形机制由层错转变为孪晶.这表明孪晶的形成更大程度上取决于温度.此外,合金Co含量的提升以及层错能的下降都会使层错和孪晶延伸并穿过γ基体和γ\'析出相,该方式提升了材料的蠕变抗力以及蠕变寿命.“,”The deformation microstructure
采用在线去应力退火工艺对线性摩擦焊TiA1合金接头进行处理,避免了焊后裂纹的产生.显微组织分析表明,接头焊缝区与热力影响区界限明显,焊缝区主要由等轴γ晶组成,并含有少量的α2相.靠近焊缝的热影响区内的层状γ晶具有明显的流线特征,其方向与焊接界面热塑性金属的流动方向一致.接头的显微硬度从母材区到焊缝区呈逐渐增加的趋势,焊缝区显微硬度相较于母材区增加了约1700 MPa;接头的室温抗拉强度与母材相当,在683 MPa到717 MPa之间.焊缝区的细晶强化效应是接头强度较高的主要原因.“,”Crack-free
以Cu93P钎料为基体,在其表面热浸镀锡,制备CuPSn钎料,采用扫描电镜、万能力学试验机、显微硬度计、差热分析仪、箱式电阻炉和体视显微镜分析锡镀层的界面形貌,钎料的抗拉强度、显微硬度、熔化温度和润湿性.结果表明:在Cu93P钎料表面热浸镀锡过程中,液态锡与钎料发生了界面反应,生成Cu6Sn5金属间化合物,即钎料基体与锡镀层形成良好的冶金结合;随着热浸镀温度的升高和时间的延长,CuPSn钎料的抗拉强度和显微硬度均呈降低趋势,抗拉强度的降低源于界面处产生的Cu6Sn5脆性化合物和孔洞,显微硬度的降低源于热浸
通过SEM、OM和DSC,研究添加Ho的A1-Zn-Mg-Cu合金均匀化热处理制度,测试不同均匀化热处理过程中合金的电导率和硬度变化.结果 表明,铸态合金中存在4种第二相:T(AlZnMgCu),Al7Ct2Fe,Al8Cu4Ho及S(A12CuMg),第二相导致合金元素分布存在严重微观偏析.合金在475℃均匀化热处理20 h后,T相完全回溶基体且未观察到S相,仅剩余A17Cu2Fe和Al8Cu4Ho.硬度和电导率随T相的回溶而变化,T相的回溶使得合金硬度升高,电导率降低.同时,在475℃均匀化热处理5~
研究了Y和Zr掺杂对CeFeB合金相组成、磁性能和温度稳定性的影响.结果 表明,CeYFeB合金由2∶14∶1主相和少量α-Fe相组成.Y掺杂可有效提高合金的矫顽力、剩磁和最大磁能积.同时由于Y2Fe14B相优异的磁性能与高温稳定性,其温度稳定性也得到明显改善,掺杂后合金的剩磁和矫顽力温度系数分别为-0.32%/K和-0.41%/K,与纯CeFeB合金相比分别提高了38.5%和40.6%.Y和Zr共掺杂后,由于增加的磁晶各向异性场和晶粒尺寸细化所产生的联合效应,合金的矫顽力、剩磁和最大磁能积大幅度提高,分
分别利用失稳图和功率耗散图确定BT25钛合金失稳变形组织和动态再结晶变形组织的热力参数边界条件,并将其输入到Deform-3D有限元软件中,使加工图技术与有限元技术能够进行有效结合.利用二次开发后的软件对BT25钛合金在变形温度为950~1100℃和应变速率0.001~1 s-1的条件下进行失稳变形组织和动态再结晶行为的模拟和预测,并通过对比金相组织,验证了该模拟结果的可靠性.结果 表明,流动应力随变形温度的升高或应变速率的降低而降低;失稳变形组织集中在低温、高应变速率区域;高温和低应变速率均有利于动态再
通过丝网印刷方法,在由LiNi1/3Co1/3Mn1/3O2、导电添加剂和聚偏氟乙烯制成的电极表面涂覆了一层薄薄的氧化石墨烯.在充电截止电压为4.3 V的条件下进行了循环性能和倍率性能测试.结果 表明:未改性电极在恒电流充放电测试中容量下降且极化增加,而包覆改性后电极的容量衰减程度和极化增加速度降低.这是由于氧化石墨烯涂层抑制了LiNi1/3C01/3Mn1/3O2电极和电解质之间的部分副反应,使得改性电极的循环稳定性和倍率性能显著提高,为提升LiNi1/3Co1/3Mn1/3O2电极性能提供了一种环境友
采用选区激光熔化技术(SLM)制备了梯度Ti-6Al-4V合金.随着样品沉积厚度的逐渐增加,控制激光功率或扫描速率逐步升高或降低,以此研究了梯度结构Ti-6Al-4V合金的相变及结构演变.结果表明:由于选取激光熔化过程中的高冷却速率,SLM制备的Ti-6Al-4V合金的主要组织结构为初始β柱状晶里的针状马氏体.β柱状晶会随着激光功率的增加或扫描速率的降低而增宽.激光功率和扫描速率的变化会引起马氏体择优取向的变动.最后,由于局部不同的能量变化,随样品沉积厚度增加而逐步升高或降低的扫描速率会引发2种不同的空洞
研究了一种新型仿生骨小梁结构的植入物的摩擦系数,该新型骨小梁结构采用Ti-6Al-4V合金粉末进行3D打印制备.从牛骨中取皮质骨和松质骨作为摩擦配副.从2种结构的起始接触角测试结果可知,仿生结构的接触角(87.7°)要比均匀骨小梁结构的接触角(96.9°)小一些,说明其表面润湿性相对较好.对于均匀骨小梁结构而言,其平均摩擦系数在0.71~0.82之间,明显低于仿生骨小梁结构的摩擦系数(0.82~o.99).均匀骨小梁结构的最大静摩擦系数为0.99~1.26,而仿生骨小梁结构的最大静摩擦系数为1.52~1.