论文部分内容阅读
传统文本聚类方法只适合处理静态样本,且时间复杂度较高。针对该问题,提出一种基于簇相合性的文本增量聚类算法。采用基于词项语义相似度的文本表示模型,利用词项之间的语义信息,通过计算新增文本与已有簇之间的相合性实现对文本的增量聚类。增量处理完部分文本后,对其中错分可能性较大的文本重新指派类别,以进一步提高聚类性能。该算法可在对象数据不断增长或更新的情况下,避免大量重复计算,提高聚类性能。在20 Newsgroups数据集上进行实验,结果表明,与k-means算法和SHC算法相比,该算法可减少聚类时间,提高聚类性