【摘 要】
:
Although Ti3C2 MXene sheets have attracted extensive attention in lithium-ion storage techniques, their restacking makes against and even hinders the Li ions diffusion within them, thereby decreasing the capacity as well as rate performance of conventiona
【机 构】
:
Laboratory of Clean Energy Chemistry and Materials,State Key Laboratory of Solid Lubrication,Lanzhou
论文部分内容阅读
Although Ti3C2 MXene sheets have attracted extensive attention in lithium-ion storage techniques, their restacking makes against and even hinders the Li ions diffusion within them, thereby decreasing the capacity as well as rate performance of conventional MXene anode. Here, for the first time, we roll up the Ti3C2Tx sheets into scrolls with unclosed topological structure and the interlayer galleries to alleviate the restacking problem. Thus, Ti3C2Tx scrolls as anode materials in lithium-ion batteries (LIBs) have higher capacity and better rate performance than Ti3C2Tx sheets. On the bases of these, high-capacity silicon nanoparticles are added during the rolling process to in-situ produce Ti3C2Tx/Si composite scrolls. The addition of 10% silicon nanoparticles shows the best overall improvement among capacity, rate capability and cyclic stability for Ti3C2Tx scrolls.
其他文献
The chemical and electrochemical stability of lanthanide nickelates La2NiO4+δ (LNO), Pr2NiO4+δ (PNO) and their mixed compounds La2-xPrxNiO4+δ (LPNOs) with x= 0.5, 1 or 1.5 is reported. The aim is to promote these materials as efficient electrodes for soli
The development of high-efficiency and low-cost bifunctional oxygen electrocatalysts is critical to enlarge application of zinc-air batteries(ZABs).However,it still remains challenges due to their uncon-trollable factor at atomic level during the catalyst
Chemical looping technology holds great potential on efficient CO2 splitting with much higher CO pro-duction and CO2 splitting rate than photocatalytic processes. Conventional oxygen carrier requires high temperature (typically 850–1000 ℃) to ensure suffi
在Gleeble-3800热模拟机上采用等温压缩实验研究了N08800铁镍基合金(/%:0.015C,20.8Cr,31.2Ni,0.42Al,0.35Ti)的高温压缩变形行为.获得合金在温度为1150~1280℃、应变速率为1~20 s-1条件下的真应力-真应变曲线.通过线性回归得到N08800合金的高温材料常数a为0.0092,n为4.34,热变形激活能Q为432780J/mol,建立了N08800合金的热变形峰值本构模型.结果 表明,N08800合金在热压缩变形过程中,高温低应变速率下,动态再结晶容
Metal selenides owing to their high theoretical capacity and good conductivity are considered as one of the potential candidates for the anode materials of sodium-ion batteries (SIBs). However, their practical applications are greatly restricted by the po
Quantitative behavior of non-equilibrium excitation by direct electron impact in low-temperature dry reforming of methane was investigated by integrated studies of experimental validation and kinetic mod-eling. A plasma chemistry kinetic mechanism incorpo
It is highly desirable to design and synthesize two-dimensional nanostructured electrode materials with high electrical conductivity, large electrolyte-accessible surface area and more exposed active sites for energy storage applications. Herein, MXene/Co
The booming growth of organic-inorganic hybrid lead halide perovskite solar cells have made this promis-ing photovoltaic technology to leap towards commercialization. One of the most important issues for the evolution from research to practical applicatio
Periodically changed current is called pulse current. It has been found that using the pulse current to charge/discharge lithium-ion batteries can improve the safety and cycle stability of the battery. In this short review, the mechanisms of pulse current
分析得出10B28钢结疤的主要原因是钢水N含量偏高,钢水中的Ti不足以完全固N,致使大量的细小的BN在晶界析出,铸坯在矫直过程形成裂纹,进而在轧制过程形成线材表面结疤.取样分析证实,精炼过程使用高N含量(4.6%)缓释脱氧剂造渣是钢水含N高的主要原因;使用铝粒替代缓释脱氧剂脱氧造渣,精炼过程增N量可由43.4×10-6降至11.4×10-6.通过将转炉出钢C由0.06%提高至≥0.08%、降低精炼前期加热功率、铝粒替代缓释脱氧剂造渣等措施,10B28钢N含量稳定控制在70×10-6以下,线材合格率由不足5