Continuous Fabrication of Ti3C2Tx MXene-Based Braided Coaxial Zinc-Ion Hybrid Supercapacitors with I

来源 :纳微快报(英文版) | 被引量 : 0次 | 上传用户:youyou061017
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Zinc-ion hybrid fiber supercapacitors(FSCs) are promising energy storages for wearable elec-tronics owing to their high energy density,good flexibility,and weavability.However,it is still a critical challenge to optimize the structure of the designed FSC to improve energy density and realize the continuous fabrication of super-long FSCs.Herein,we propose a braided coaxial zinc-ion hybrid FSC with several meters of Ti3C2Tx MXene cathode as core electrodes,and shell zinc fiber anode was braided on the surface of the Ti3C2Tx MXene fibers across the solid electrolytes.According to the simu-lated results using ANSYS Maxwell software,the braided structures revealed a higher capacitance compared to the spring-like structures.The resulting FSCs exhibited a high areal capacitance of 214 mF cm-2,the energy density of 42.8 μWh cm-2 at 5 mV s-1,and excellent cycling stability with 83.58% capacity retention after 5000 cycles.The coaxial FSC was tied several kinds of knots,proving a shape-controllable fiber energy storage.Further-more,the knitted FSC showed superior stability and weavability,which can be woven into watch belts or embedded into textiles to power smart watches and LED arrays for a few days.
其他文献
开发了一种新型的纳米微晶silicate-1(S-2)的合成方法.与常规的silicate-1(S-1)相比,S-2具有较小的粒径和光滑的晶体表面.当S-2作为晶种合成纳米ZSM-5聚集体时,ZSM-5团聚体为尺寸为0.8~1.0μm的单分散颗粒,构成团聚体的ZSM-5晶体为b轴厚度为60~80 nm的纳米薄片.ZSM-5纳米薄片沿着同一方向规则地堆叠形成独特的孔结构,该孔结构包括1.3 nm的均一孔道和25 nm的宽尺寸孔道.
Flexible pressure sensors with high sensitivity are desired in the fields of electronic skins,human-machine interfaces,and health monitoring.Employing ionic soft materials with microstructured archi-tectures in the functional layer is an effective way tha
In conventional ethylene carbonate (EC)/propylene car-bonate (PC) electrolyte,sodium metal reacts spontaneously and del-eteriously with solvent molecules.This significantly limits the prac-tical feasibility of high-voltage sodium metal batteries based on
The enzyme-mediated elevation of reactive oxygen species (ROS) at the tumor sites has become an emerging strategy for regulating intracellular redox status for anticancer treatment.Herein,we proposed a camouflaged bionic cascaded-enzyme nano-reactor based
The development of lightweight and integration for electronics requires flexible films with high thermal con-ductivity and electromagnetic interference (EMI) shielding to overcome heat accumulation and electromagnetic radiation pollution.Herein,the hierar
Atomically dispersed metals on N-doped carbon sup-ports (M-NxCs) have great potential applications in various fields.However,a precise understanding of the definitive relationship between the configuration of metal single atoms and the dielectric loss pro
Out-of-plane microneedle structures are widely used in various applications such as transcutaneous drug delivery and neural signal recording for brain machine interface.This work presents a novel but simple method to fabri-cate high-density silicon (Si) m
High-temperature electromagnetic (EM) protec-tion materials integrated of multiple EM protection mechanisms and functions are regarded as desirable candidates for solving EM interference over a wide temperature range.In this work,a novel microwave modulat
Liquid metal (LM) has become an emerging material paradigm in the electro-magnetic interference shielding field owing to its excellent electrical conductivity.However,the processing of lightweight bulk LM compos-ites with finite package without leakage is
Ultra-stable piezoelectric nanogenerator (PENG) driven by environ-mental actuation sources with all-weather service capability is highly desirable.Here,the PENG based on N doped 4H-SiC nanohole arrays (NHAs) is proposed to harvest ambient energy under low