论文部分内容阅读
为了在X射线脉冲星地面实验系统仿真源模拟产生X射线的基础上,能够快速稳定地得到脉冲轮廓,采用硬件历元叠加的方法获得脉冲轮廓。研究了用硬件实现历元叠加及其数据整合的算法,该算法首先在MATLAB现场可编程逻辑阵列(FPGA)中实现,再通过MATLAB硬件描述语言(HDL)代码生成模块把算法转换成HDL,经编译后获得配置硬件的Bit文件,最终在开发板FPGA上实现数据处理的硬件模块。一段时间内的光子到达时间数据通过MATLAB算法得到的脉冲轮廓数据与通过硬件模块处理后得到的数据结果存在误差,在单个时间窗口内误差最大值为2个光子数,误差平均值占光子数统计平均值的0.084%;两组统计的脉冲轮廓数据中不同数据占总数据个数的9.481%,这样的误差不影响后端模拟导航模块的导航。利用硬件实现的历元叠加及其数据整合模块具有处理速度快、设备紧凑、功耗低的特点,为航天器利用X射线脉冲星导航提供了一种可行的硬件数据处理技术上的支持。
In order to obtain the pulse profile quickly and stably on the basis of X-ray simulation of the X-ray pulsar ground system simulation source, the pulse profile is obtained by the method of hardware epoch superposition. This paper studies the algorithm of integrating ephemeris and its data by using hardware. The algorithm is first implemented in MATLAB Field Programmable Logic Array (FPGA) and then converted into HDL by MATLAB hardware description language (HDL) code generation module Compiled to obtain the Bit file configuration hardware, and ultimately on the FPGA development board to implement data processing hardware module. The photon arrival time data in a period of time There is an error between the pulse profile data obtained through MATLAB algorithm and the data obtained through the hardware module processing. The maximum error is 2 photons in a single time window, and the average value of errors accounts for photon number statistics The average of 0.084%; two sets of statistics of the pulse contour data of the total number of different data accounted for 9.481%, this error does not affect the back-end analog navigation module navigation. The use of hardware to achieve epoch superposition and data integration module with processing speed, compact equipment, low power consumption characteristics for spacecraft using X-ray pulsar navigation provides a viable hardware data processing technology support.