论文部分内容阅读
转化是研究和解决数学问题的一种有效的思考方法,根据学生已有的生活经验和知识,运用事物和事物之间互相联系,把未知变为已知,把复杂变为简单的思维方法。《新数学课程标准》中指出:数学学习应当使学生“形成解决问题的一些策略,体验解决问题策略的多样性,发展实践能力与创新精神”。就解题的本质而言,解题既意味着“转化”,因此学生学会数学“转化”策略,有利于实现学习迁移,特别是原理和态度的迁移。因此,我们在小学数学教学中,应当结合具体的教学内容,渗透数学“转化”思想,有意识地培养学生学会用“转化”思想解决问题,从而提高数学能力。
一、“转化”是解决问题时经常采用的方法
,“转化”的手段和方法是多样而灵活的,既与实际问题的内容和特点有关,也与学生的认知结构有关,掌握“转化”策略不仅有利于问题的解决,更有益于思维的发展。教学中不应只以学生能够解决教材里的各个问题为目的,而在于学生对“转化”策略的体验与主动应用。具有初步的“转化”意识和能力,对以后的学习与解决问题将会产生十分积极的作用。
二、转化的学习基础
(一)知识基础--策略学习的基石
万丈高楼平地起,转化策略的运用同样如此。“转化”就是把新问题变成旧问题,把复杂的问题变成简单的问题,从而使原问题得以解决的一种策略。其实,运用什么方法转化,转化后的问题又怎么解决,这都需要一定的知识基础,否则问题也不能得到解决。可见,一定的知识基础是“转化”策略学习的基石。
(二)能力基礎--策略学习的有力杠杆
策略的学习不仅需要一定的知识基础,也需要一定的能力基础。心理学研究表明:能力是人们获取知识、掌握技能的基本条件,完成任何一种活动都需要多种能力的结合。因此,学生已具备的能力基础可以说是策略学习的有力杠杆。
1.观察、想象、操作能力:
学习几何形体离不开敏锐的观察力和空间想象力,以及在此基础上进行动手操作的能力。
2.迁移、推理能力
:由于“转化”是把一类问题转化成另一类问题,因此无论从转化的视角,还是从推广应用的视角,学生都应具有迁移、推理的能力。所以,教学“转化”策略时,要引导学生正确推理,实现转化,切实解决问题。当然更应由例题的学习,进而能解决类似的更多实际问题。
3.求异、创新能力
:人人具有求异的思想,人人具有创新的冲动。事实上,转化也是一种重要的策略,但在真正解决问题时,还需要确定具体的转化目标和方法。
4.收集、处理信息的能力
:现代社会是信息社会,收集、处理信息的能力是一个人必备的学习能力,也是衡量一个人能力高低的重要标准。因而,它也是学生学习转化策略的重要能力基础。
三、转化策略
1.、运用类比联想,实现转化
类比方法是通过对两个研究对象的比较,根据它们某些方面的相同或类似之处,推出它们在其他方面也可能相同或类似的一种推理方法。因此,在学习新知识时,适时运用类比方法进行转化,可使生疏的问题转化为熟悉的问题,有利于学生更好地接受新知识,巩固旧知识。
2.、运用数形结合思想,实现转化
数形结合思想是充分利用“形”把一定的数量关系形象地表示出来。即通过做一些线段图、 数形图 、长方形面积图 、集合体等来帮助学生正确理解数量关系,使问题内容具体化、形象化,从而把复杂问题转化为简单问题的一种数学思想方法。
3.、运用替换思想,实现转化
替换思想是数学教学的重要思维方法,替换的实质是改变题目的形式,但却不改变题目的本质。当我们遇到题意比较难懂的习题时,可以把题中的某些条件或问题替换成与其内容等价的另一种形式,从而实现解题思路的顺利转化,以达到解题的目的。
4.、运用假设法,实现转化
在小学数学中,学生对思考性较强的问题常常感到难以解决。因此,教师在教学过程中要注意教给学生解决问题的方法,以提高他们的思维能力。而假设方法往往在解决问题的过程中起关键性的作用。假设法就是把抽象性的问题转化为比较具体的问题,使其中的数量关系更加明确,更易于把握解题的路径。
5.、运用已有知识,实现转化
生疏问题向熟悉问题转化是解题中常用的思考方法。解题能力实际上是一种创造性的思维能力,而这种能力的关键是能否细心观察,运用过去所学的知识,将生疏问题转化为熟悉问题。因此作为教师,应深刻挖掘量变因素,将教材抽象程度利用学过知识,加工到使学生通过努力能够接受的水平上来,缩小接触新内容时的陌生度,避免因研究对象的变化而产生的心理障碍,这样做常可得到事半功倍的效果。
6.、运用合理设置问题,实现转化
教师通过合理设置问题,将一个复杂的问题分成几个难度与学生的思维水平同步的小问题,再分析说明这几个小问题之间的相互联系,以局部知识的掌握为整体服务。例如,针对某一概念,可围绕下面几个角度设置问题:概念的构成;概念所涉及的子概念;概念的外延;概念的内涵;概念的确定与否定;概念之间的关系;概念的应用以及由概念而设计的一些构造性问题等等。问题与问题之间要有一定的梯度,以利于教学时启发学生思维。
复杂问题简化是数学解题中运用最普通的思考方法。一个难以直接解决的问题,通过深入观察和研究,转化为简单问题迅速求解。
一、“转化”是解决问题时经常采用的方法
,“转化”的手段和方法是多样而灵活的,既与实际问题的内容和特点有关,也与学生的认知结构有关,掌握“转化”策略不仅有利于问题的解决,更有益于思维的发展。教学中不应只以学生能够解决教材里的各个问题为目的,而在于学生对“转化”策略的体验与主动应用。具有初步的“转化”意识和能力,对以后的学习与解决问题将会产生十分积极的作用。
二、转化的学习基础
(一)知识基础--策略学习的基石
万丈高楼平地起,转化策略的运用同样如此。“转化”就是把新问题变成旧问题,把复杂的问题变成简单的问题,从而使原问题得以解决的一种策略。其实,运用什么方法转化,转化后的问题又怎么解决,这都需要一定的知识基础,否则问题也不能得到解决。可见,一定的知识基础是“转化”策略学习的基石。
(二)能力基礎--策略学习的有力杠杆
策略的学习不仅需要一定的知识基础,也需要一定的能力基础。心理学研究表明:能力是人们获取知识、掌握技能的基本条件,完成任何一种活动都需要多种能力的结合。因此,学生已具备的能力基础可以说是策略学习的有力杠杆。
1.观察、想象、操作能力:
学习几何形体离不开敏锐的观察力和空间想象力,以及在此基础上进行动手操作的能力。
2.迁移、推理能力
:由于“转化”是把一类问题转化成另一类问题,因此无论从转化的视角,还是从推广应用的视角,学生都应具有迁移、推理的能力。所以,教学“转化”策略时,要引导学生正确推理,实现转化,切实解决问题。当然更应由例题的学习,进而能解决类似的更多实际问题。
3.求异、创新能力
:人人具有求异的思想,人人具有创新的冲动。事实上,转化也是一种重要的策略,但在真正解决问题时,还需要确定具体的转化目标和方法。
4.收集、处理信息的能力
:现代社会是信息社会,收集、处理信息的能力是一个人必备的学习能力,也是衡量一个人能力高低的重要标准。因而,它也是学生学习转化策略的重要能力基础。
三、转化策略
1.、运用类比联想,实现转化
类比方法是通过对两个研究对象的比较,根据它们某些方面的相同或类似之处,推出它们在其他方面也可能相同或类似的一种推理方法。因此,在学习新知识时,适时运用类比方法进行转化,可使生疏的问题转化为熟悉的问题,有利于学生更好地接受新知识,巩固旧知识。
2.、运用数形结合思想,实现转化
数形结合思想是充分利用“形”把一定的数量关系形象地表示出来。即通过做一些线段图、 数形图 、长方形面积图 、集合体等来帮助学生正确理解数量关系,使问题内容具体化、形象化,从而把复杂问题转化为简单问题的一种数学思想方法。
3.、运用替换思想,实现转化
替换思想是数学教学的重要思维方法,替换的实质是改变题目的形式,但却不改变题目的本质。当我们遇到题意比较难懂的习题时,可以把题中的某些条件或问题替换成与其内容等价的另一种形式,从而实现解题思路的顺利转化,以达到解题的目的。
4.、运用假设法,实现转化
在小学数学中,学生对思考性较强的问题常常感到难以解决。因此,教师在教学过程中要注意教给学生解决问题的方法,以提高他们的思维能力。而假设方法往往在解决问题的过程中起关键性的作用。假设法就是把抽象性的问题转化为比较具体的问题,使其中的数量关系更加明确,更易于把握解题的路径。
5.、运用已有知识,实现转化
生疏问题向熟悉问题转化是解题中常用的思考方法。解题能力实际上是一种创造性的思维能力,而这种能力的关键是能否细心观察,运用过去所学的知识,将生疏问题转化为熟悉问题。因此作为教师,应深刻挖掘量变因素,将教材抽象程度利用学过知识,加工到使学生通过努力能够接受的水平上来,缩小接触新内容时的陌生度,避免因研究对象的变化而产生的心理障碍,这样做常可得到事半功倍的效果。
6.、运用合理设置问题,实现转化
教师通过合理设置问题,将一个复杂的问题分成几个难度与学生的思维水平同步的小问题,再分析说明这几个小问题之间的相互联系,以局部知识的掌握为整体服务。例如,针对某一概念,可围绕下面几个角度设置问题:概念的构成;概念所涉及的子概念;概念的外延;概念的内涵;概念的确定与否定;概念之间的关系;概念的应用以及由概念而设计的一些构造性问题等等。问题与问题之间要有一定的梯度,以利于教学时启发学生思维。
复杂问题简化是数学解题中运用最普通的思考方法。一个难以直接解决的问题,通过深入观察和研究,转化为简单问题迅速求解。