论文部分内容阅读
题型一 面面平行问题
【例1】 如图,四面体ABCD中,M、E、F分别为△BAC,△ACD及△ADB的重心.
求证:(1) 平面MEF∥平面BCD;
(2) 求S△MEF∶S△DBC.
分析 本题考查面面平行的判定以及面面平行的性质。
(1) 根据重心的性质易知应该连接AM,AE,AF,再根据相似比可知△MEF的三边分别与△DBC的三边平行,进而可得结论;
(2) 因为两个三角形所在的平面互相平行,因此,求两三角形面积之比,实质求这两个三角形对应边之比。
解 (1) 连接AM,AE及AF,分别延长使之交BC、CD、BD于G、H、P三点,由E、F、M分别为三角形的重心,
所以AMAG=AEAH=AFAP=23,所以连接GH、HP、PG,后有ME∥GH,EF∥PH,
可证ME∥平面BCD,EF∥平面BCD,
故平面EFM∥平面BCD.
(2) 由(1)知AMAG=AEAH=23,
即ME=23GH=13BD,
同理可证MF=13CD,EF=13BC,
所以△MEF∽△DBC,其相似比为1∶3,
所以S△MEF∶S△DBC=1∶9.
点拨 由于M、E、F分别是三个三角形的重心,从而联想到重心将三角形的三条中线三等分,
由于平行线分线段成比例,由此联想到直线ME∥GH,ME=23GH,进一步可以证明直线ME与平面BCD平行,从而使命题得证。
题型二 面面垂直问题
【例2】 (2011年江苏卷第16题)如图,在四棱锥PABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点.
求证:(1) 直线EF∥平面PCD;
(2) 平面BEF⊥平面PAD.
分析 本题主要考查直线与平面、平面与平面的位置关系,
考察空间想象能力和推理论证能力。要证线面平行可在所
求平面内找一条与已知直线平行的直线。要证面面垂直可在其中一个平面内找一条另一平面的垂线。
证明 (1) 在△PAD中,因为E、F分别为AP,AD的中点,所以EF∥PD.
又因为EF平面PCD,PD平面PCD,所以直线EF∥平面PCD.
(2) 连接DB,因为AB=AD,∠BAD=60°,所以△ABD为正三角形,因为F是AD的中点,所以BF⊥AD.因为平面PAD⊥平面ABCD,BF平面ABCD,平面PAD∩平面ABCD=AD,所以BF⊥平面PAD.又因为BF平面BEF,所以平面BEF⊥平面PAD.
点拨 由于E、F分别是AP、AD的中点,从而可以证明EF∥PD,由此可以证明EF与平面PCD平行。由平面PAD⊥平面ABCD可以得到直线BF⊥平面PAD,进一步可以证明两个平面垂直。
题型三 面面平行与面面垂直的综合问题
【例3】 如右图,已知平面α∥平面β∥平面γ,且β位于α与γ之间.点A、D∈α,C、F∈γ,AC∩β=B,DF∩β=E.
(1) 求证:ABBC=DEEF;
(2) 设AF交β于M,AC∥\DF,α与β间距离为h′,α与γ间距离为h,当h′h的值是多少时,△BEM的面积最大?
分析 本题主要考查面面平行所涉及的综合求解问题,这类问题不仅在平行时存在,同时在垂直时也存在,对同学们综合知识的能力要求比较高。
证明(1) 连接BM、EM、BE.
∵β∥γ,平面ACF分别交β、γ于BM、CF,
∴BM∥CF.∴ABBC=AMMF,
同理,AMMF=DEEF.∴ABBC=DEEF.
(2) 由(1)知BM∥CF,
∴BMCF=ABAC=h′h.同理MEAD=h-h′h.
∴S△BEM=12CF•ADh′h1-h′hsin∠BME.
据题意知,AD与CF是异面直线,只是β在α与γ间变化位置.故CF、AD是常量,sin∠BME是AD与CF所成角的正弦值,也是常量,令h′∶h=x.只要考查函数y=x(1-x)的最值即可,显然当x=12,即h′h=12时,y=-x2+x有最大值.∴当h′h=12,即β在α、γ两平面的中间时,S△BEM最大.
点拨 要证明线段之比相等,一般可以转化为平行线问题,而求解面积的最值问题,一般可将面积表示为某一变量的函数,利用函数知识求解最值问题。
牛刀小试
1. 如图,在三棱锥PABC中,PA=3,AC=AB=4,PB=PC=BC=5,
D、E分别是BC、AC的中点,F为PC上的一点,且PF∶FC=3∶1.
(1) 求证:PA⊥BC;
(2) 试在PC上确定一点G,使平面ABG∥平面DEF;
(3) 求三棱锥PABC的体积.
2. 如图,在三棱锥VABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且AC=BC=a,∠VDC=θ0<θ<π2.
(1) 求证:平面VAB⊥平面VCD;
(2) 试确定角θ的值,使得直线BC与平面VAB所成的角为π6.
满盈者,不损何为?慎之!慎之!——朱舜水
【参考答案】
1. (1) 在△PAC中,∵PA=3,AC=4,PC=5,
∴PA2+AC2=PC2,
∴PA⊥AC,又AB=4,PB=5,PA=3,
∴在△PAB中,同理可得PA⊥AB,
∵AC∩AB=A,∴PA⊥平面ABC,
∵BC平面ABC,
∴PA⊥BC.
(2) 如图所示,取PC的中点G,连接AG,BG,
∵PF∶FC=3∶1,∴F为GC的中点.
又D、E分别为BC、AC的中点,
∴AG∥EF,BG∥FD,
又AG∩GB=G,EF∩FD=F,
∴面ABG∥面DEF,
即PC上的中点G为所求的点.
(3) VPABC=5394.
2. (1) ∵AC=BC=a,∴△ACB是等腰三角形,又D是AB的中点,∴CD⊥AB,
又VC⊥底面ABC.∴VC⊥AB.
于是AB⊥平面VCD.
又AB平面VAB,∴平面VAB⊥平面VCD.
(2) 过点C在平面VCD内作CH⊥VD于H,则由(1)知CH⊥平面VAB.
连接BH,于是∠CBH就是直线BC与平面VAB所成的角.依题意∠CBH=π6,所以在Rt△CHD中,CH=22asinθ;
在Rt△BHC中,CH=asinπ6=a2,∴sinθ=22.
∵0<θ<π2,∴θ=π4.
故当θ=π4时,直线BC与平面VAB所成的角为π6.
(作者:张健,江苏省启东市汇龙中学)
【例1】 如图,四面体ABCD中,M、E、F分别为△BAC,△ACD及△ADB的重心.
求证:(1) 平面MEF∥平面BCD;
(2) 求S△MEF∶S△DBC.
分析 本题考查面面平行的判定以及面面平行的性质。
(1) 根据重心的性质易知应该连接AM,AE,AF,再根据相似比可知△MEF的三边分别与△DBC的三边平行,进而可得结论;
(2) 因为两个三角形所在的平面互相平行,因此,求两三角形面积之比,实质求这两个三角形对应边之比。
解 (1) 连接AM,AE及AF,分别延长使之交BC、CD、BD于G、H、P三点,由E、F、M分别为三角形的重心,
所以AMAG=AEAH=AFAP=23,所以连接GH、HP、PG,后有ME∥GH,EF∥PH,
可证ME∥平面BCD,EF∥平面BCD,
故平面EFM∥平面BCD.
(2) 由(1)知AMAG=AEAH=23,
即ME=23GH=13BD,
同理可证MF=13CD,EF=13BC,
所以△MEF∽△DBC,其相似比为1∶3,
所以S△MEF∶S△DBC=1∶9.
点拨 由于M、E、F分别是三个三角形的重心,从而联想到重心将三角形的三条中线三等分,
由于平行线分线段成比例,由此联想到直线ME∥GH,ME=23GH,进一步可以证明直线ME与平面BCD平行,从而使命题得证。
题型二 面面垂直问题
【例2】 (2011年江苏卷第16题)如图,在四棱锥PABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点.
求证:(1) 直线EF∥平面PCD;
(2) 平面BEF⊥平面PAD.
分析 本题主要考查直线与平面、平面与平面的位置关系,
考察空间想象能力和推理论证能力。要证线面平行可在所
求平面内找一条与已知直线平行的直线。要证面面垂直可在其中一个平面内找一条另一平面的垂线。
证明 (1) 在△PAD中,因为E、F分别为AP,AD的中点,所以EF∥PD.
又因为EF平面PCD,PD平面PCD,所以直线EF∥平面PCD.
(2) 连接DB,因为AB=AD,∠BAD=60°,所以△ABD为正三角形,因为F是AD的中点,所以BF⊥AD.因为平面PAD⊥平面ABCD,BF平面ABCD,平面PAD∩平面ABCD=AD,所以BF⊥平面PAD.又因为BF平面BEF,所以平面BEF⊥平面PAD.
点拨 由于E、F分别是AP、AD的中点,从而可以证明EF∥PD,由此可以证明EF与平面PCD平行。由平面PAD⊥平面ABCD可以得到直线BF⊥平面PAD,进一步可以证明两个平面垂直。
题型三 面面平行与面面垂直的综合问题
【例3】 如右图,已知平面α∥平面β∥平面γ,且β位于α与γ之间.点A、D∈α,C、F∈γ,AC∩β=B,DF∩β=E.
(1) 求证:ABBC=DEEF;
(2) 设AF交β于M,AC∥\DF,α与β间距离为h′,α与γ间距离为h,当h′h的值是多少时,△BEM的面积最大?
分析 本题主要考查面面平行所涉及的综合求解问题,这类问题不仅在平行时存在,同时在垂直时也存在,对同学们综合知识的能力要求比较高。
证明(1) 连接BM、EM、BE.
∵β∥γ,平面ACF分别交β、γ于BM、CF,
∴BM∥CF.∴ABBC=AMMF,
同理,AMMF=DEEF.∴ABBC=DEEF.
(2) 由(1)知BM∥CF,
∴BMCF=ABAC=h′h.同理MEAD=h-h′h.
∴S△BEM=12CF•ADh′h1-h′hsin∠BME.
据题意知,AD与CF是异面直线,只是β在α与γ间变化位置.故CF、AD是常量,sin∠BME是AD与CF所成角的正弦值,也是常量,令h′∶h=x.只要考查函数y=x(1-x)的最值即可,显然当x=12,即h′h=12时,y=-x2+x有最大值.∴当h′h=12,即β在α、γ两平面的中间时,S△BEM最大.
点拨 要证明线段之比相等,一般可以转化为平行线问题,而求解面积的最值问题,一般可将面积表示为某一变量的函数,利用函数知识求解最值问题。
牛刀小试
1. 如图,在三棱锥PABC中,PA=3,AC=AB=4,PB=PC=BC=5,
D、E分别是BC、AC的中点,F为PC上的一点,且PF∶FC=3∶1.
(1) 求证:PA⊥BC;
(2) 试在PC上确定一点G,使平面ABG∥平面DEF;
(3) 求三棱锥PABC的体积.
2. 如图,在三棱锥VABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且AC=BC=a,∠VDC=θ0<θ<π2.
(1) 求证:平面VAB⊥平面VCD;
(2) 试确定角θ的值,使得直线BC与平面VAB所成的角为π6.
满盈者,不损何为?慎之!慎之!——朱舜水
【参考答案】
1. (1) 在△PAC中,∵PA=3,AC=4,PC=5,
∴PA2+AC2=PC2,
∴PA⊥AC,又AB=4,PB=5,PA=3,
∴在△PAB中,同理可得PA⊥AB,
∵AC∩AB=A,∴PA⊥平面ABC,
∵BC平面ABC,
∴PA⊥BC.
(2) 如图所示,取PC的中点G,连接AG,BG,
∵PF∶FC=3∶1,∴F为GC的中点.
又D、E分别为BC、AC的中点,
∴AG∥EF,BG∥FD,
又AG∩GB=G,EF∩FD=F,
∴面ABG∥面DEF,
即PC上的中点G为所求的点.
(3) VPABC=5394.
2. (1) ∵AC=BC=a,∴△ACB是等腰三角形,又D是AB的中点,∴CD⊥AB,
又VC⊥底面ABC.∴VC⊥AB.
于是AB⊥平面VCD.
又AB平面VAB,∴平面VAB⊥平面VCD.
(2) 过点C在平面VCD内作CH⊥VD于H,则由(1)知CH⊥平面VAB.
连接BH,于是∠CBH就是直线BC与平面VAB所成的角.依题意∠CBH=π6,所以在Rt△CHD中,CH=22asinθ;
在Rt△BHC中,CH=asinπ6=a2,∴sinθ=22.
∵0<θ<π2,∴θ=π4.
故当θ=π4时,直线BC与平面VAB所成的角为π6.
(作者:张健,江苏省启东市汇龙中学)