Navigation of Non-holonomic Mobile Robot Using Neuro-fuzzy Logic with Integrated Safe Boundary Algor

来源 :International Journal of Automation and Computing | 被引量 : 0次 | 上传用户:forlichking
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
In the present work, autonomous mobile robot(AMR) system is intended with basic behaviour, one is obstacle avoidance and the other is target seeking in various environments. The AMR is navigated using fuzzy logic, neural network and adaptive neurofuzzy inference system(ANFIS) controller with safe boundary algorithm. In this method of target seeking behaviour, the obstacle avoidance at every instant improves the performance of robot in navigation approach. The inputs to the controller are the signals from various sensors fixed at front face, left and right face of the AMR. The output signal from controller regulates the angular velocity of both front power wheels of the AMR. The shortest path is identified using fuzzy, neural network and ANFIS techniques with integrated safe boundary algorithm and the predicted results are validated with experimentation. The experimental result has proven that ANFIS with safe boundary algorithm yields better performance in navigation, in particular with curved/irregular obstacles. In the present work, an autonomous mobile robot (AMR) system is intended with basic behavior, one is obstacle avoidance and the other is target seeking in various environments. The AMR is navigated using fuzzy logic, neural network and adaptive neurofuzzy inference system (ANFIS) controller with safe boundary algorithm. In this method of target for behavior, the obstacle avoidance at every instant improves the performance of robot in navigation approach. The inputs to the controller are the signals from various sensors fixed at front face, left and right face of the AMR. The output signal from controller regulates the angular velocity of both front power wheels of the AMR. The shortest path is identified using fuzzy, neural network and ANFIS techniques with integrated safe boundary algorithm and the predicted results are validated with experimentation. result has proven that ANFIS with safe boundary algorithm yields better performance in navigation, in particular with curved / irregular obstacles.
其他文献
This paper presents modeling of a 12-degree of freedom(Do F) bipedal robot, focusing on the lower limbs of the system,and trajectory design for walking on strai
娲皇庙,现位于山西省霍州市大张镇贾村,规模不大,坐北朝南。庙内建有三间单檐悬山顶的圣母殿,为清乾隆二年(公元1737年)遗构~([1])。殿内壁面绘满了颂扬娲皇圣母的壁画,东壁
In this paper, an adaptive full order sliding mode(FOSM) controller is proposed for strict feedback nonlinear systems with mismatched uncertainties. The design
该文从挂篮荷载计算、施工流程、支座及临时固结施工、挂篮安装及试验、合拢段施工、模板制作安装、钢筋安装、混凝土的浇筑及养生、测量监控等方面人手,介绍了S226海滨大桥
该文从挂篮荷载计算、施工流程、支座及临时固结施工、挂篮安装及试验、合拢段施工、模板制作安装、钢筋安装、混凝土的浇筑及养生、测量监控等方面人手,介绍了S226海滨大桥
该文从挂篮荷载计算、施工流程、支座及临时固结施工、挂篮安装及试验、合拢段施工、模板制作安装、钢筋安装、混凝土的浇筑及养生、测量监控等方面人手,介绍了S226海滨大桥
Day by day, networked control system(NCS) methods have been promoted for distributed closed-loop control systems.Interestingly, the integration of control and c
该文从挂篮荷载计算、施工流程、支座及临时固结施工、挂篮安装及试验、合拢段施工、模板制作安装、钢筋安装、混凝土的浇筑及养生、测量监控等方面人手,介绍了S226海滨大桥
In recent years, theoretical and practical research on event-based communication strategies has gained considerable research attention due primarily to their ir