论文部分内容阅读
针对轴承故障诊断应用中多特征融合导致的维度高、相关性强、信息冗余等问题,提出一种基于伪标签半监督核局部Fisher判别分析(Semi-supervised Kernel Local Fisher Discriminant Analysis,SS-KLFDA)轴承故障诊断方法。为了能利用大量无标签样本提高算法判别性能,该方法首先采用密度峰值聚类算法对样本进行聚类分析得到伪标签,然后通过增加规范化项到局部FDA算法的类内散度矩阵和类间散度矩阵中,以此保持无标签样本的聚类结构一致性,最后通过局部FDA算法来保持