论文部分内容阅读
针对高光谱非线性混合模型中的共线性问题,提出了一种非监督的增强型非线性自编码网络方法 ENAE(Enhanced Nonlinear Autoencoder)。通过结合自编码网络在挖掘数据内在结构、提取特征方面的优势,引入端元正则项减弱端元间的共线性效应,从而提高高光谱混合像元分解精度。ENAE方法的实现步骤主要包括两部分:一是网络结构初始化,二是非线性分解。网络结构初始化是确定编码器的节点数以及端元和丰度的初值;非线性分解则主要是实现损失函数的最小化。通过模拟数据、城市区域真实数据和高分五号卫星高